
Cray Fortran Reference Manual (S-3901) 8.6

Contents
1 About the Cray Fortran Reference Manual...4

2 Fortran Compiler Introduction...5

3 Invoke the Cray Fortran Compiler...7

4 Compiler Command Line Options...9

4.1 Cache Management Options...9

4.2 Debug Options...10

4.3 List and Compiler Info Options..11

4.4 General Optimization Options...12

4.5 Interprocedural Analysis (IPA) Optimization Options...20

4.6 Linker Options...22

4.7 Math Options...23

4.8 Message Options...25

4.9 Miscellaneous Options..27

4.10 Miscellaneous Fortran Specific Options..31

4.11 Performance Tool Options...48

4.12 Preprocess Options...49

4.13 Program Model Specific Options...51

4.14 Scalar Optimization Options..52

4.15 Target Options...52

4.16 Vector Optimization Options..53

5 Set Environment Variables to the Cray Fortran Compiler...55

6 Cray Fortran Directive Use...60

6.1 Inline and Clone Directives..61

6.2 Local Control Directives...63

6.3 Miscellaneous Directives...66

6.4 PGAS Directive..72

6.5 Scalar Optimization Directives...73

6.6 Storage Directives...75

6.7 Vectorization Directives...77

7 Source Preprocessing..89

8 OpenMP Overview..96

9 OpenACC Use..105

10 Conformance Checks...110

11 Cray Fortran Language Extensions..112

11.1 Characters, Lexical Tokens, and Source Form..112

Contents

 2

11.2 Types...113

11.3 Data Object Declarations and Specifications..118

11.4 Expressions and Assignment..120

11.5 Execution Control..124

11.6 Input/Output Statements..125

11.7 Error, End-of-record, and End-of-file Conditions...125

11.8 Input/Output Editing...126

11.9 Program Units..130

11.10 Procedures..131

11.11 Intrinsic Procedures and Modules...131

11.12 Exceptions and IEEE Arithmetic..133

11.13 Coarrays..134

11.14 Compile and Execute Programs Containing Coarrays..135

11.15 Submodules...136

12 Cray Fortran Deferred Implementation and Optional Features..137

13 Cray Fortran Implementation Specifics...138

14 Enhanced I/O: Using the assign Environment..146

14.1 Understand the assign Environment...146

14.2 Tune File Connection Behavior...150

14.3 Define the Assign Environment File..161

14.4 Use Local Assign Mode...162

15 Interlanguage Communication..163

Contents

 3

1 About the Cray Fortran Reference Manual
The Cray® Fortran Reference Manual includes reference information for the Cray Fortran compiler.

Cray Fortran Reference Manual (S-3901) 8.6
This version includes updated Fortran reference information to support CCE software release 8.6, released June
29, 2017.

Scope and Audience
This guide is intended as a general overview of the Cray Fortran compiler for users and application programmers.

Typographic Conventions
Monospace Indicates program code, reserved words, library functions, command-line prompts,

screen output, file/path names, and other software constructs.

Monospaced Bold Indicates commands that must be entered on a command line or in response to an
interactive prompt.

Oblique or Italics Indicates user-supplied values in commands or syntax definitions.

Proportional Bold Indicates a GUI Window, GUI element, cascading menu (Ctrl→Alt→Delete), or
key strokes (press Enter).

\ (backslash) At the end of a command line, indicates the Linux® shell line continuation character
(lines joined by a backslash are parsed as a single line).

Trademarks
The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY and
design, SONEXION, URIKA, and YARCDATA. The following are trademarks of Cray Inc.: APPRENTICE2,
CHAPEL, CLUSTER CONNECT, CRAYDOC, CRAYPAT, CRAYPORT, DATAWARP, ECOPHLEX, LIBSCI,
NODEKARE. The following system family marks, and associated model number marks, are trademarks of Cray
Inc.: CS, CX, XC, XE, XK, XMT, and XT. The registered trademark LINUX is used pursuant to a sublicense from
LMI, the exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis. Other trademarks used in
this document are the property of their respective owners.

About the Cray Fortran Reference Manual

 4

2 Fortran Compiler Introduction
The Cray Compiling Environment 8.6 Fortran compiler supports Cray XE, Cray XK, Cray XC, and Cray CS series
systems. The Cray Fortran compiler supports the Fortran 2008 standard (ISO/IEC 1539-1:2010). The Cray
Fortran compiler is also documented in man pages, beginning with the crayftn(1) man page. Where the
information in this manual differs from the man page, the information in the man page supersedes this manual.

The Cray Fortran Programming Environment
The Cray Fortran Programming Environment consists of the tools and libraries used to develop Fortran
applications. These are:

● The ftn command, which invokes the Cray Fortran compiler. The ftn command is properly termed a
compiler driver, as it is used both to compile source code into object code and to link object code files and
libraries to create executable files. This compiling and linking can be performed either as separate processes
or as one contiguous process, which has significant implications for file handling considerations. These
implications are described later in this section. See the crayftn(1) man page for more information.

● CrayLibs libraries, which provides library routines, intrinsic procedures, I/O routines, and data conversion
routines.

● The ftnlx command, which generates listings and checks for possible errors in Fortran programs. See the
ftnlx(1) man page for more information.

● The ftnsplit command, which splits named Fortran files into separate files with one program unit per file.
See the ftnsplit(1) man page for more information.

● The ftnmgen command, which invokes the Fortran makefile generator. See the ftnmgen(1) man page for
more information.

Cray Fortran Compiler Messages
The Cray Fortran compiler can produce many messages during compilation and linking. To expand on these
messages, use the explain command. For more information, see the explain(1) man page.

Document-specific Conventions
Cray pointer The term Cray pointer refers to the Cray pointer data type extension.

Fortran Standard Compatibility
In the Fortran standard, the term processor means the combination of a Fortran compiler and the computing
system that executes the code. A processor conforms to the standard if it compiles and executes programs that
conform to the standard, provided that the Fortran program is not too large or complex for the computer system in
question.

Fortran Compiler Introduction

 5

The compiler can be directed to flag and generate messages when nonstandard usage of Fortran is encountered.
For more information about this command line option (ftn -en), see -d disable_opt and -e enable_opt or the
crayftn(1) man page. When the option is in effect, the compiler prints messages for extensions to the standard
that are used in the program. As required by the standard, the compiler also flags the following items and
provides the reason that the item is being flagged:

● Obsolescent features

● Deleted features

● Kind type parameters not supported

● Violations of any syntax rules and the accompanying constraints

● Characters not permitted by the processor

● Illegal source form

● Violations of the scope rules for names, labels, operators, and assignment symbols

The Cray Fortran compiler includes extensions to the Fortran standard. Because the compiler processes
programs according to the standard, it is considered to be a standard-conforming processor. When the option
to note deviations from the Fortran standard is in effect (-en), extensions to the standard are flagged with
ANSI messages when detected at compile time.

Fortran 2008 Compatibility
No known issues.

Fortran Extensions
The Cray Fortran Compiler supports extended features beyond those specified by the current standard. For more
information, see Cray Fortran Language Extensions.

Related Fortran Publications
For more information about the Fortran language and its history, consult the following commercially available
reference books:

● Fortran 2003 and 2008 standards can be downloaded from http://www.nag.co.uk/sc22wg5/. The Fortran 2008
standard is also available directly from the ISO.

● Chapman, S. Fortran 95/2003 for Scientists & Engineers. McGraw Hill, 2007. ISBN 0073191574.

● Metcalf, M., J. Reid, and M. Cohen. Modern Fortran. Oxford University Press, 2011. ISBN-13 978-0
199601424.

● Jeanne C. Adams, Walter S. Brainerd, Richard A. Hendrickson, Richard E. Maine, Jeanne T. Martin, and
Brian T. Smith, The Fortran 2003 Handbook: The Complete Syntax, Features, and Procedures. Springer,
2009. ISBN 978-1-84628-378-9.

Fortran Compiler Introduction

 6

http://www.nag.co.uk/sc22wg5/

3 Invoke the Cray Fortran Compiler
The ftn(1) command invokes the Cray Fortran compiler when the Cray Compiling Environment is loaded.

Cray Fortran Command Syntax
The ftn command is a driver that invokes the Cray Fortran Compiler when the Cray Compiling Environment is
loaded, and links in the libraries required in order to produce code that can be executed on the Cray compute
nodes. Valid ftn options include those of the ftn(1) driver, as well as those specfic to the Cray Fortran
Compiler:

crayftn [-A module_name[, module_name] ...] [-b bin_obj_file] [-c] [-d disable_opt] [-D
identifier [= value]] [-e enable_opt] [-f source_form] [-F] [-g] [-G debug_lvl] [-h arg] [-I
include_dir] [-J dir_name] [-K trap=opt [,opt] . . .] [-l lib_file] [-L ldir] [-m msg_lvl] [-M
msgs] [-N col] [-o out_file] [-O opt[,opt] ...] [-p module_site] [-Q path] [-r list_opt] [-R
runchk] [-s size] [-S] [-T] [-U identifier[, identifier] ...] [-v] [-V] [-Wphase,"opt..."] [-x
dirlist] [-X npes] [-Yphase,dirname] [--] sourcefile [sourcefile ...]

sourcefile Suffix
The sourcefile.suffix names the file or files to be processed. The file suffixes indicate the content of each
file and determine whether the preprocessor, compiler, assembler, or linker will be invoked.

Table 1. sourcefile Suffixes

.f, .for Fixed-format source, compile

.F, .FOR Fixed-format source, preprocess, compile

.f90, .f95, .f03, .f08, .ftn Free-format source, compile

.F90, .F95, .F03, .F08, .FTN Free-format source, preprocess, compile

.o object file, link

.a assembler source, assemble

The source form specified on the -fsource_form option overrides the source form implied by the file suffixes.

If only one source file is specified on the command line, the .o file is created and deleted. To retain the .o file,
use the -c option to disable the linker. Object files produced by the Cray Fortran, C, C++, or assembler compilers,
can be specified. Object files are passed to the linker in the order in which they appear on the ftn command line.
If the linker is disabled by the -b or -c option, no files are passed to the linker.

Invoke the Cray Fortran Compiler

 7

File Types Used or Created by the Compiler
The compiler uses and creates several types of files during processing:

a.out Default name of the executable output file. Use the compiler driver command line option -o to specify an
executable name other than a.out.

.i Files containing output from the source preprocessor

.o Relocatable object code. During compilation, these relocatable object files are saved in the current
directory automatically. If CrayPat is used to conduct performance analysis experiments, the object files
created during compilation must be kept in order to preserve source-to-executable function mapping. To
do so, use the -h keepfiles option.

.a Library files containing external references

.s Assembly language files. Files with .s extensions are assembled and written to the corresponding .o
file.

.mod If the -em option is specified, the compiler writes a modulename.mod file for each
module; modulename is created by taking the name of the module and, if necessary, converting it to
uppercase. This file contains module information, including any contained module procedures.

Invoke the Cray Fortran Compiler

 8

4 Compiler Command Line Options
With the use of appropriate options, it is possible to direct the compiler to generate intermediate translations,
including relocatable object files (-c option), assembly source expansions (-S option). In general, it is possible to
save the intermediate files and reference them later on another invocation of the compiler, with other files or
libraries included as necessary.

Options that are not recognized by the compiler driver are passed to the linking phase.

If the specified options conflict, the option specified last on the command line overrides the previously specified
option. Exceptions to this rule are noted in the individual descriptions of the options.

Options with that start with -h are the same as options starting with -O.

There are many options that start with -h. Specify multiple -h options using commas to separate the arguments.

Conflicting options

In this example, -h fp0 overrides -h fp1.

ftn -h fp1,fp0 myfile.f

4.1 Cache Management Options

-h cachelevel , -O cachelevel
Default: cache2
Specifiy the levels of automatic cache management to perform. Automatic cache management can be overridden
by the use of the cache directives (cache , cache_nt , and loop_info).

The values for level:

0 Cache blocking (including directive-based blocking) is turned off. This level is compatible with all scalar and
vector optimization levels.

1 Conservative automatic cache management. Characteristics include moderate compile time. Symbols are
placed in the cache when the possibility of cache reuse exists and the predicted cache footprint of the symbol
in isolation is small enough to experience the reuse.

2 Moderately aggressive automatic cache management. Characteristics include moderate compile time.
Symbols are placed in the cache when the possibility of cache reuse exists and the predicted state of the
cache model is such that the symbol will experience the reuse.

Compiler Command Line Options

 9

3 Aggressive automatic cache management. Characteristics include potentially high compile time. Symbols are
placed in the cache when the possibility of cache reuse exists and the allocation of the symbol to the cache is
predicted to increase the number of cache hits.

4.2 Debug Options

-G debug_lvl, -g
Enable the generation of debugging information used by symbolic debuggers. Allow debugging with breakpoints.
Better debugging information comes at the cost of inhibiting certain optimization techniques, so choose the
debug_lvl that best fits the debugging needs of any particular source file in an application.

The -g option is equivalent to -G0. The -g option is included for compatibility with earlier versions of the compiler
and many other UNIX systems; the -G option is the preferred specification.

These options recognize OpenMP directives and disable all optimizations. They imply -hthread1 -homp -
hfp0. The debugging options take precedence over any conflicting options that appear on the command line. If
more than one debugging option appears, the last one specified overrides the others.

The -g or -G options can be specified on a per-file basis, so that only part of an application pays the price for
improved debugging.

debug_lvl Optimization Breakpoints Allowed
On

Debugging Execution Speed

0 None Every executable
statement

Best Limited

1 Partial Block boundaries Medium Medium

2 Full Function entry and exit Limited Best

fast Full Every executable
statement

Requires fast-track
debugger

Best

-h develop
Default: off

Reduce compile time at the expense of optimization. This option is intended to be used when a program is under
development and compiled frequently. This option is different from and independent of the -O option. For
example, -O0 disables all optimizations, but sometimes can increase compile time because certain optimizations
reduce code size, which allow other phases of the compiler to deal with less code.

-h dir_check
Enables a run time check for the !dir$ collapse directive and checks the validity of the loop_info count
information. Equivalent to the -Rd option and added to improve C/Fortran command line compatibility.

Compiler Command Line Options

 10

-h gasp[=opt[:opt]]
Default: disabled
Request GASP (Global Address Space Performance Analysis) instrumentation. Requests instrumentation of
events generated by shared local accesses. Instrumenting these events can add runtime overhead to the
application.

When opt is specified, the compiler provides additional instrumentation as follows:

local Requests instrumentation of events generated by shared local accesses. Instrumenting these events
can add runtime overhead to the application

functions Enables function instrumentation. Sets -hipa0

-h nodwarf
Disables DWARF generation during compilation. By default, DWARF source line information is generated to
support traceback analysis. -hdwarf is deprecated. This option has no affect if -g or -G is specified.

-h zero
Default: disabled

Cause stack-allocated memory to be initialized to all zeros.

4.3 List and Compiler Info Options

-h list=list_opt, -r list_opt
-h list=list_opt option is identical to -r list_opt

The values for list_opt (note that all options are off by default):

a Include all reports in the listing (including source, cross references, options, lint, loopmarks, common block,
and options used during compilation).

c Listing includes a COMMON block report (lists all common blocks and members of each block).

d Decompiles (translates) the intermediate representation of the compiler into listings that resemble the format
of the source code. Use these files to examine the restructuring and optimization changes made by the
compiler, which can lead to insights about changes that can be made to the Fortran source to improve its
performance.

The compiler produces two decompilation listing files, with these extensions, per source file specified on the
command line: .opt and .cg.

e Expand included files in the source listing. This option is off by default.

E Same as -h list=e.

i Used with the -h list=m option to intersperse loop optimization messages within the loopmark listing. By
default, the messages are placed at the bottom of the program unit.

Compiler Command Line Options

 11

l Lists source code and includes lint style checking. The listing includes the COMMON block report (c option).

m Produces a source listing with loopmark information. To provide a more complete report, this option
automatically enables the -O negmsgs option to show why loops were not optimized. If this information is
not required, use the -O nonegmsgs option on the same command line. Loopmark information will not be
displayed if the -d B option has been specified.

o Show all options used by the compiler during compilation.

s Lists source code.

T Retain file.T after processing rather than deleting it. The file.T can be used to call ftnlx directly. For
more information, see the ftnlx(1) man page.

x Generate a cross-reference listing.

-v
The -v option sends compilation information to the standard error file (stderr). The information generated
indicates the compilation phases as they occur and all options and arguments being passed to each processing
phase.

-V
Displays compiler version information. Version information consists of the product name, the version number, and
the current date and time.

Unlike all other command-line options, this option can be specified without specifying an input file name. If the
command line specifies no source file, no compilation occurs.

4.4 General Optimization Options
-h [no]add_paren
Default: -h noadd_paren
The -h add_paren option automatically adds parenthesis to select associative operations (+,-,*) to encourage
left to right evaluation of floating point and complex expressions. For more information, see the crayftn(1) man
page. Left to right evaluation is not required by the language standards, but some applications may expect it.

-h [no]aggress, -O [no]aggress
Default: noaggress
Provides greater opportunity to optimize loops that would otherwise by inhibited from optimization due to an
internal compiler size limitation. noaggress leaves this size limitation in effect. With aggress, internal compiler
tables are expanded to accommodate larger loop bodies. This option can increase the compilation's time and
memory size.

Compiler Command Line Options

 12

alias=mode
Default: -halias=default
The values for mode are:

none The compiler assumes that the program contains no aliases; i.e. any given object is accessed through
exactly one mechanism. For example, an object may be consistently accessed directly or via a unique
pointer, but the object may not be accessed via multiple pointers. This mode may improve optimization,
but use it with caution; if aliases are present, incorrect code may be generated.

default The compiler infers either the c or fortran alias analysis mode from the source language. C++ uses the
same mode as C, with the pointer aliasing rules additionally applying to references.

c The compiler assumes that aliases may exist as allowed by the C language. Briefly, two pointers of
similar types (e.g., int and unsigned int) may be used to access the same object, but pointers of
different types may not be used to access the same object. There are two exceptions to this rule. First,
a pointer to char (char*) may be used to access an object of any type. Second, a structure field may be
accessed via a pointer to its type. Accesses to a union are permitted to employ type-punning (i.e.,
reading from a different field than the one most recently written), provided that such accesses are
made only through the union itself and not through pointers to its members.

fortran The compiler assumes that aliases may exist as allowed by the Fortran language. In particular, the
compiler assumes that arguments never alias. This mode may be specified for C programs which
behave like Fortran to mimic the effect of applying the restrict qualifier to all pointer parameter types.

tolerant The compiler assumes that the program is not well-behaved with respect to pointers, such that it may
use a pointer to access an object of a completely different type (e.g., using a pointer to long to access
a double). This mode activates an extremely conservative alias analysis that may reduce optimization.

-h [no]autoprefetch, -O [no]autoprefetch
Default: autoprefetch
This option controls autoprefetch optimization. This option does not affect the loop_info noprefetch or
prefetch directives.

-h [no]autothread, -O [no]autothread
Default: noautothread
The -h autothread option enables autothreading.

This is identical to the -O autothread option and is provided for command-line compatibility between the Cray
C and Fortran compilers.

-h display_opt
The -h display_opt option displays the compiler optimization settings currently in force.

This option is identical to the -eo option and is provided for command-line compatibility between the Cray C
compiler and Fortran compilers.

-h flex_mp=level
Default: -h flex_mp=default

Compiler Command Line Options

 13

The -h flex_mp=level option controls the aggressiveness of optimizations which may affect floating point and
complex repeatability when application requirements require identical results when varying the number of ranks or
threads.

The values for level are:

intolerant Has the highest probability of repeatable results, but also the highest performance penalty.

strict Uses some safe optimizations and yields higher performance than intolerant, with a high
probability of repeatable results.

conservative Uses more aggressive optimization and yields higher performance than intolerant, but results
may not be sufficiently repeatable for some applications.

default Uses more aggressive optimization and yields higher performance than conservative, but results
may not be sufficiently repeatable for some applications.

tolerant Uses most aggressive optimization and yields highest performance, but results may not be
sufficiently repeatable for some applications.

-h fusionn, -O fusionn
Default: fusion2
Loop fusion can improve the performance of loops, although in rare cases it may degrade performance. The n
argument allows loop fusion to be turned on or off and determine where fusion should occur.

Loop fusion is disabled when n is set to 0.

The values for n are:

0 No fusion. Ignore all fusion directives and do not attempt to fuse other loops.

1 Attempt to fuse loops that are marked by the fusion directive.

2 Attempt to fuse all loops (includes array syntax implied loops), except those marked with the nofusion
directive.

-h loop_trips=[tiny | small | medium | large | huge], -O
loop_trips=[tiny | small | medium | large | huge]
Specifies runtime loop trip counts for all loops in a compiled source file. This information is used to optimize the
runtime characteristics of the application.

-h [no]msgs, -O [no]msgs
Default: nomsgs
The -h msgs option causes the compiler to write optimization messages to stderr.

This option is identical to the -O msgs option and is provided for command-line compatibility with the Cray C
compiler.

-h [no]negmsgs, -O [no]negmsgs
Default: nonegmsgs

Compiler Command Line Options

 14

The -h negmsgs option causes the compiler to write messages to stderr that indicate why optimizations such
as vectorization, inlining, or cloning did not occur. The -h negmsgs option enables the -h msgs option. The -h
list=a option enables the -h negmsgs option.

This option is identical to the -O negmsgs option and is provided for command-line compatibility with the Cray C
compiler.

-h [no]omp_trace
Default: -h noomp_trace
The -h omp_trace option turns the insertion of the CrayPat OpenMP tracing calls on.

-h [no]overindex, -O [no]overindex
Default: nooverindex
The overindex option declares that there are array subscripts that index a dimension of an array that is outside
the declared bounds of that array. The nooverindex option declares that there are no array subscripts that index
a dimension of an array that is outside the declared bounds of that array.

-h [no]pattern, -O [no]pattern
Default: pattern
Globally enables pattern matching. When the compiler recognizes certain patterns in the source code, it replaces
the construct with a call to an optimized library routine. A loop or statement that has been pattern matched and
replaced with a call to a library routine is indicated with an A in the loopmark listing. The nopattern option
globally disables pattern matching and causes the compiler to ignore the PATTERN and NOPATTERN directives.

Pattern matching is not always worthwhile. If there is a small amount of work in the pattern-matched construct, the
call overhead may outweigh the time saved by using the optimized library routine. When compiling using the
default optimization settings, the compiler attempts to determine whether each given candidate for pattern
matching will in fact yield improved performance.

-h pl=program_library
Create and use a persistent repository of compiler information specified by program_library. When used with
-hwp, this option provides application-wide, cross-file, automatic inlining. The program_library repository is
implemented as a directory and the information contained in program library is built up with each compiler
invocation. Any compilation that does not have the -hpl option will not add information to this repository.
Because of the persistence of program_library, it is the user's responsibility to manage it. For example, rm -
r program_library might be added to the make clean target in an application makefile. Because
program_library is a directory, use rm -r to remove it. If an application makefile works by creating files in
multiple directories during a single build, the program_library should be an absolute path, otherwise multiple and
incomplete program library repositories will be created. For example, avoid -hpl=./PL.1 and use -hpl=/
fullpath/builddir/PL.1 instead.

-h shortcircuitn, -O shortcircuitn
Default: shortcircuit2

Compiler Command Line Options

 15

Specify various levels of short circuit evaluation. Short circuit evaluation is an optimization in which the compiler
analyzes all or part of a logical expression based on the results of a preliminary analysis. When short circuiting is
enabled, the compiler attempts short circuit evaluation of logical expressions that are used in IF statement scalar
logical expressions. This evaluation is performed on the .AND. operator and the .OR. operator.

Assume operand1 .OR. operand2. The operand2 need not be evaluated if operand1 is true because in that
case, the entire expression evaluates to true. Likewise, if operand2 is true, operand1 need not be evaluated.

The compiler performs short circuit evaluation in a variety of ways, based on the following command line options

● -O shortcircuit0 disables short circuiting of IF and ELSEIF statement logical conditions.

● -O shortcircuit1 specifies short circuiting of IF and ELSEIF logical conditions only when a PRESENT,
ALLOCATED, or ASSOCIATED intrinsic procedure is in the condition.

● The short circuiting is performed left to right. In other words, the left operand is evaluated first, and if it
determines the value of the operation, the right operand is not evaluated. The following code segment shows
how this option could be used:

SUBROUTINE SUB(A)
INTEGER,OPTIONAL::A
IF (PRESENT(A) .AND. A==0) THEN
...

● The expression A==0 must not be evaluated if A is not PRESENT. The short circuiting performed when -
O shortcircuit1 is in effect causes the evaluation of PRESENT(A) first. If that is false, A==0 is not evaluated. If
-O shortcircuit1 is in effect, the preceding example is equivalent to the following example:

SUBROUTINE SUB(A)
INTEGER,OPTIONAL::A
IF (PRESENT(A)) THEN
 IF (A==0) THEN
 ...

● -O shortcircuit2 specifies short circuiting of IF and ELSEIF logical conditions, and it is done left to right.
All .AND. and .OR. operators in these expressions are evaluated in this way. The left operand is evaluated,
and if it determines the result of the operation, the right operand is not evaluated. This is the default for all
other cpu targets other than mic-knl.

● -O shortcircuit3 specifies short circuiting of IF and ELSEIF logical conditions. It is an attempt to avoid making
function calls. When this option is in effect, the left and right operands to .AND. and .OR. operators are
examined to determine if one or the other contains function calls. If either operand has functions, short circuit
evaluation is performed. The operand that has fewer calls is evaluated first, and if it determines the result of
the operation, the remaining operand is not evaluated. If both operands have no calls, then no short circuiting
is done. For the following example, the right operand of .OR. is evaluated first. If A==0 then ifunc() is not
called:

IF (ifunc() == 0 .OR. A==0) THEN
...

This is the default if the cpu target is either mic-knl.

-h profile_generate
The -h profile_generate option directs that the source code be instrumented for gathering profile
information. The compiler inserts calls and data-gathering instructions to allow CrayPat to gather information

Compiler Command Line Options

 16

about the loops in a compilation unit. If using this option, CrayPat must be run on the resulting executable so the
CrayPat data-gathering routines are linked in. For information about CrayPat and profile information, see the Cray
Performance Measurement and Analysis Tools User Guide.

Do not combine the -g and -h profile_generate compiler command-line options. Doing so produces reports
in CrayPat that contain blank tables and spurious warning messages.

-h [no]safe_addr
Default: -h safe_addr
Provides assurance that most conditionally executed memory references are thread safe, which in turn supports a
more aggressive use of speculative writes, thereby improving application performance. If -h nosafe_addr is
specified, the optimizer performs speculative stores only when it can prove absolute thread safety using the
information available within the application code.

-h threadn, -O threadn
Default: -h thread2
The -h threadn option controls the optimization of both OpenMP and automatic threading.

The values for n:

0 No autothreading or OMP threading. The thread0 option is similar to -h noomp , but -h noomp disables
OpenMP only and does not affect autothreading.

1 Specifies strict compliance with the OpenMP standard for directive compilation. Strict compliance is defined
as no extra optimizations in or around OpenMP constructs. In other words, the compiler performs only the
requested optimizations. If -h thread1 is specified, it is equivalent to specifying -h nosafe_addr.

2 OpenMP parallel regions are subjected to some optimizations; that is, some parallel region expansion.
Parallel region expansion is an optimization that merges two adjacent parallel regions in a compilation unit
into a single parallel region.

3 Full optimization: loop restructuring, including modifying iteration space for static schedules (breaking
standard compliance). Reduction results may not be repeatable.

-h unrolln , -O unrolln
Default: unroll2
The -h unrolln option globally controls loop unrolling and changes the assertiveness of the UNROLL directive.
By default, the compiler attempts to unroll loops, unless the NOUNROLL directive is specified of a loop. Generally,
unrolling loops increases single processor performance at the cost of increased compile time and code size.

Loop unrolling is disabled when the -O or -h scalar level is set to 0.

The values for n:

0 No unrolling (ignore all unroll directives and do not attempt to unroll other loops).

1 Attempt to unroll loops that are marked by the unroll directive.

2 Unroll loops when performance is expected to improve. Loops marked with the unroll or nounroll
directive override automatic unrolling.

Compiler Command Line Options

 17

-h wp
Enables the whole program mode.

This option causes the compiler backend (IPA, optimizer, codegenerator) to be invoked at application link time,
enabling whole program automatic inlining/cloning and future whole program interprocedural analysis (IPA)
optimizations. Since the -hwp option provides automatic application-wide inlining, the -Oipafrom option is no
longer needed for cross-file inlining and using these two options together is not permitted. Requires that -h
pl=program_library is also specified.

The options -hpl= and -hwp should be specified on all compiler invocations and on the compiler link invocation.
Since -hwp delays the compiler optimization step until link time, -c compiles will take less time and the link step
will take longer. Normally, this is just a time shift from one build phase to another with roughly the same overall
compile time. In some cases increased inlining may cause an increase in overall compile time. Using -hwp allows
the compiler backend to be invoked in parallel during a build. Setting the environment variable NPROC controls the
number of concurrent compiler backend invocations and this parallelism may reduce overall compile time.

-O opt , opt...
The -O opt option specifies optimization features. More than one -O option can be specified, with
accompanying arguments, on the command line. If specifying more than one argument to -O, separate the
individual arguments with commas and do not include intervening spaces.The -eo option or the ftnlx command
displays the optimization options the compiler uses at compile time. The -eo option is identical to the -h
display_opt option which is provided for command-line compatibility with the Cray C compiler.

The -O 0, -O 1, -O 2, and -O 3 options allow a general level of optimization to be specified that includes
vectorization, scalar optimization, and inlining. Generally, as the optimization level increases, compilation time
increases and execution time decreases.

The -O 1, -O 2, and -O 3 specifications do not directly correspond to the numeric optimization levels for scalar
optimization, vectorization, and inlining. For example, specifying -O 3 does not necessarily enable vector3. Cray
reserves the right to alter the specific optimizations performed at these levels from release to release.

The other optimization options, such as -O aggress and -O cachen, control pattern matching, cache
management, zero incrementing, and several other optimization features. Some of these features can also be
controlled through compiler directives.

Table 2. Optimization values

scalar0 scalar1 scalar2 scalar3 vector0 vector1 vector2 vector3 thread0 thread1 thread2 thread3

Low compile cost X X X

Moderate compile

cost

X X X X

Potentially high

compile cost

X X X X X

Potential numerical

differences from

unoptimized

execution(operator

reassociation)

X X X X X X X X X X

Compiler Command Line Options

 18

scalar0 scalar1 scalar2 scalar3 vector0 vector1 vector2 vector3 thread0 thread1 thread2 thread3

Implies at least

scalar1

X X X X

Implies at least

scalar2

X X X X

Loop nest

restructuring

X X X X X X X X X X

Vectorize array

syntax statements

X X X X

OpenMP disabled X

All -O options, except -O0, 1, 2 and 3, are also available with the -h option for command-line compatibility with
the Cray C compiler.

-Olevel
Default: -O2

Specify a general level of optimization that includes vectorization, scalar optimization, cache management, and
inlining. Generally, as the optimization level increases, compilation time increases and execution time decreases.

The -Olevel specifications do not directly correspond to the numeric optimization levels for scalar optimization,
vectorization, and inlining. For example, specifying -O 3 does not necessarily enable -h vector3. Cray
reserves the right to alter the specific optimizations performed at these levels from release to release. Use the -h
display_opt option to display the optimization options used during compilation.

The values for level:

0 Disable optimization, including floating point optimizations. Low compile time, small compile size, no global
scalar optimization. Vectorize most array syntax statements, but disable all other vectorizations. Implies -h
fp0. Some informational messages may not be issued.

1 Conservative optimization: moderate compile time and size, global scalar optimizations, and loop nest
restructuring. Results may differ from the results obtained when -O 0 is specified because of operator
reassociation. No optimizations will be performed that might create false exceptions. Only array syntax
statements and inner loops are vectorized and the system does not perform some vector reductions. User
tasking is enabled, so OpenMP directives are recognized.

2 Moderate optimization: moderate compile time and size, global scalar optimizations, pattern matching, and
loop nest restructuring. Results may differ from results obtained when -O 1 is specified because of vector
reductions. The -O 2 option enables automatic vectorization of array syntax and entire loop nests. This is the
default level of optimization.

3 Aggressive optimization: potentially larger compile time and size, global scalar optimizations, possible loop
nest restructuring, and pattern matching. The optimizations performed might create false exceptions in rare
instances. Results may differ from results obtained when -O 1 is specified because of vector reductions.

Compiler Command Line Options

 19

-O [no]zeroinc, -h [no]zeroinc
Default: -O nozeroinc
The -O zeroinc option causes the compiler to assume that a constant increment variable (CIV) can be
incremented by zero. A CIV is a variable that is incremented only by a loop invariant value. For example, in a loop
with variable J, the statement J = J + K, where K can be equal to zero, J is a CIV. -O zeroinc can cause less
strength reduction to occur in loops that have variable increments. The -O [no]zeroinc option is identical to
the -h [no]zeroinc option.

4.5 Interprocedural Analysis (IPA) Optimization Options
Interprocedural analysis includes a set of compiler techniques that examine an entire program, as opposed to a
single function, to increase the opportunity for optimization, particularly when a program uses many, frequently
called functions.

Inlining/cloning transforms code in ways that increase the opportunity for optimization. The user controls inlining/
cloning through the use of command line options. If the user desires more fine grained control, directives may be
placed within the code. By default, the compiler will attempt inlining/cloning where it deems beneficial. Inlining/
cloning may increase object code size.

-h ipalevel , -O ipalevel
Default: -h ipa3
Specifies the level of interprocedural optimization (IPA). level may be one of the following values, and includes
functionality of previous non-zero levels:

0 All inlining and cloning is disabled. All inlining and cloning compiler directives are ignored.

1 Directive IPA. Inlining/cloning is attempted for call sites and routines that are under the control of a compiler
directive. See Inline and Clone Directives.

2 Inlining. Inline a call site to an arbitrary depth as long as the expansion does not exceed some compiler-
determined threshold. The call site must flatten for any expansion to occur. The call site is said to "flatten"
when there are no calls present in the expanded code. The call site must reside within the body of a loop and
the entire loop body must flatten. A loop body is said to "flatten" when all call sites within the body of the loop
are flattened. Includes level 1.

3 (Default) Inlining and cloning. Includes level 1 and 2. Plus, constant actual argument inlining and tiny routine
inlining.

4 Cloning and aggressive inlining. This includes levels 1, 2, and 3. Additionally, a call site does not have to
reside in a loop body to inline; nor does the call site have to necessarily flatten to inline.

5 Aggressive inlining and aggressive cloning. Includes levels 1, 2, 3, and 4.

-O ipafrom=source[:source]...
The -O ipafrom=source[:source] option explicitly indicates the functions to consider for inlining/cloning.
The source arguments identify each file or directory that contains the functions to consider for inlining/cloning.
Spaces are not allowed on either side of the equal sign.

Compiler Command Line Options

 20

All inlining directives are recognized at -Oipa levels > 1.

For information about inlining directives, see Cray Fortran Directive Use.

Note that the routines in source are not actually linked with the final program. They are simply templates for the
inliner. To have a routine contained in source linked with the program, include it in an input file to the compilation.

Use one or more of the objects described in the File Types table in the source argument.

Table 3. File Types

Fortran source files The routines in Fortran source files are candidates for
inline expansion and must contain error-free code.
Source files that are acceptable for inlining are files
that have one of the following
extensions: .f, .F, .f90, .F90, .f95, .F95, .f03,
.F03, .f08, .F08, .ftn, .FTN, .for, or .FOR.

Module files When compiling with -em and -Omodinline is in
effect, the precompiled module information is written to
modulename.mod. The compiler writes a
modulename.mod file for each module; modulename
is created by taking the name of the module and, if
necessary, converting it to uppercase.

dir A directory that contains any of the file types described
in this table.

Combined inlining is invoked by specifying the -O ipan and -O ipafrom= options on the command line. This
inlining mode will look only in source for potential targets for expansion, while applying the selected level of
inlining heuristics specified by the -O ipan option.

-O [no]modinline, -h [no]modinline
Default: -O modinline
Same as the -h modinline option. The -O modinline option prepares module procedures so they can be
inlined by directing the compiler to create templates for module procedures encountered in a module. These
templates are attached to file.o or modulename.mod. The files that contain these inlinable templates can be
saved and used later to inline call sites within a program being compiled.

When -e m is in effect, module information is stored in modname.mod. The compiler writes a modulename.mod
file for each module; modulename is created by taking the name of the module and, if necessary, converting it to
uppercase.

The process of inlining module procedures requires only that file.o or modulename.mod be available during
compilation through the typical module processing mechanism. The USE statement makes the templates
available to the inliner. There is no need to specify the file.o or modulename.mod with the -O ipafrom
option.

When -O modinline is specified, the MODINLINE and NOMODINLINE directives are recognized. Using the -
O modinline option increases the size of file.o.

Compiler Command Line Options

 21

To ensure that file.o is not removed, specify this option in conjunction with the -c option. For information about
the -c option, see -c.

4.6 Linker Options
-h [system|default]_alloc
Default: -h default_alloc
By default, the compiler uses a modified malloc implementation that offers better support for memory needs. The
-h system_alloc option directs the compiler to link in the native malloc provided by the OS instead of the
modified implementation.

-h dynamic
The -h dynamic option directs the compiler driver to link dynamic libraries at run time. This option is used to
create dynamically linked executable files and may not be used with the -h static or -h shared options. Note
that the preferred invocation is to call the generic ftn command with the -dynamic option, rather than using this
compiler specific option. See the ftn(1) man page.

-h [no]pgas_runtime
Default: pgas_runtime
The -h pgas_runtime option directs the compiler driver to link with the runtime libraries required when linking
programs that use UPC, or coarrays. In general, a resource manager job launcher such as aprun or srun must
be used to launch the resulting executable.

The -hnopgas_runtime option prevents this runtime library environment from being added to the link line.

Use the -hnopgas_runtime option with a program that does not use UPC or coarrays, when it needs to be
executed outside of the aprun/srun job launch context. For example, to test a serial program which does not
contain any UPC or coarray code on a login or service node, or fork/exec an executable on a compute node. Also,
compile non-coarray Fortran using the -hnocaf option.

-h pgas_runtime is not supported in the Envoy environment.

-h shared
The -h shared option creates a library which may be dynamically linked at run time. Note that the preferred
invocation is to call the generic ftn command with the -shared option, rather than using this compiler specific
option. See the ftn(1) man page.

-h static
The -h static option directs the linker to use the static, rather than the dynamic, version of the libraries to
create an executable file. Note that the preferred invocation is to call the generic ftn command with the -static
option. See the ftn(1) man page.

Compiler Command Line Options

 22

-l libname
The -l libname option directs the compiler driver to search for the specified object library file when linking an
executable file. To request more than one library file, specify multiple -l options.

When statically linking, the compiler driver searches for libraries by prepending ldir/lib to libname and
appending .a, for each ldir that has been specified by using the -L option. It uses the first file it finds.

When dynamically linking, the library search process is similar to the static case, with a few differences. The
compiler driver searches for libraries by prepending ldir/lib on the front of libname and appending .so on
the end of it, for each ldir that has been specified by using the -L option. If a matching .so is not found, the
compiler driver replaces .so with .a and repeats the process from the beginning. It uses the first file it finds.

There is no search order dependency for libraries.

If personal libraries are specified by using the -l command line option, those libraries are added before the
default CCE library list. The -l option is passed to the linker. For example, when the following command line is
issued, the linker looks for a library named libmylib.a and adds it to the top of the list of default libraries.

ftn -l mylib target.f

-L ldir
Changes the -l option search algorithm to look for library files in directory ldir during link time. To request more
than one library directory, specify multiple -L options.

The linker searches for library files in the compiler release-specific directories.

Multiple -L options are treated cumulatively as if all ldir arguments appeared on one -L option preceding all -l
options. Therefore, do not attempt to link functions of the same name from different libraries through the use of
alternating -L and -l options.

-h byteswapio
Forces byte-swapping of all input and output files for direct and sequential unformatted I/O. Byteswapio is
implemented during the linker phase so that it can be uniformly applied across the entire executable.

4.7 Math Options

-h fplevel , -O fplevel
Default: -h fp2
The -h fp option controls the level of floating-point optimizations. The level argument controls the level of
allowable optimization; 0 gives the compiler minimum freedom to optimize floating-point operations, while 4 gives
it maximum freedom. The higher the level, the less the floating-point operations conform to the IEEE standard.

Each level, 1-4, includes the optimizations at the previous level.

The values for level:

Compiler Command Line Options

 23

0 Use this level only when the code pushes the limits of IEEE accuracy or requires strong IEEE standard
conformance. The resulting executable code conforms more closely to the IEEE floating-point standard than
the default mode (-h fp2). Many identity optimizations are disabled. Vectorization of floating-point and
complex reductions are disabled. Executable code is slower than higher floating-point optimization levels.

1 Use this option only when the code pushes the limits of IEEE accuracy or requires strong IEEE standard
conformance. This option performs generally safe, non-conforming IEEE optimizations, such as folding a ==
a to true, where a is a floating point object. At this level, a scaled complex divide mechanism is enabled that
increases the range of complex values that can be handled without producing an underflow. Rewrite of
division into multiplication by reciprocal is inhibited.

2 Default.

3 Use when performance is more critical than the level of IEEE standard conformance provided by fp2. The -
h fp3 option is an acceptable level of optimization for many applications.

4 Use if the application uses algorithms which are tolerant of reduced precision. Do not use -h fp4 for codes
that use Boost I/O or for any codes that do "roll your own" I/O.

The approx option allows for the user of architechture-specific hardware to generate fast, but less precise,
results for floating point and complex division, square root, and exponentiation. Generally, higher -hfp levels
allow for more use of the hardware, with correspondingly less precision.

Target ARM MIC Other X86

32-bit fp2 - D, S, E -

64-bit fp2 - D, S, E -

32-bit fp3+ - D, S, E D, S

64-bit fp3+ - D, S, E -

D Division and reciprocal

S Square root and reciprocal square root

E Exponentiation

MIC Intel MIC processors (Knights Landing and later)

Table 4. Floating-point Optimization Levels

Optimization
Type

fp0 fp1 fp2 (default) fp3 fp4

Safety Maximum High High Moderate Low

Complex
divisions

Accurate and
slower

Accurate and
slower

Fast1 Fast1 Fast1

Exponentiation
rewrite

None None When
optimization

Always2,3 Always2,3

1 Algebraically correct but may lack precision in boundary cases.

Compiler Command Line Options

 24

Optimization
Type

fp0 fp1 fp2 (default) fp3 fp4

benefit is very
high2

Strength
reduction

None None Fast Fast Fast

Rewrite division
as reciprocal
equivalent4

None None Yes Aggressive Aggressive

Floating point
reductions

Slow Fast Fast Fast Fast

Expression
factoring

None Yes Yes Yes Yes

Expression tree
balancing

None None Yes Yes Yes

Inline 32-bit
operations5

No No No Yes Yes

Fused multiply-
add6

No Yes Yes Yes Yes

4.8 Message Options
-m msg_lvl
The -m msg_lvl option specifies the minimum compiler message levels to enable. The following list shows the
integers to specify in order to enable each type of message and which messages are generated by default.

msg_lvl Message types enabled

0 Error, warning, caution, note, and comment

1 Error, warning, caution, and note

2 Error, warning, and caution

3 Error and warning (default)

2 Rewriting values raised to a constant power into an algebraically equivalent series of multiplications and/or
square roots.

3 Rewriting exponentiations (ab) not previously optimized into the algebraically equivalent form exp(b * ln(a)).
4 For example, x/y is transformed to x * 1.0/y.
5 32-bit division, square root, and reciprocal square root use very fast but less precise code sequences.
6 Uses fused multiply-add instructions on architectures that support it.

Compiler Command Line Options

 25

4 Error

Caution and warning messages denote, respectively, possible and probable user errors.

By default, messages are sent to the standard error file, stderr, and are displayed on the terminal. If the -r
option is specified, messages are also sent to the listing file.

To see more detailed explanations of messages, use the explain command. This command retrieves message
explanations and displays them online. For example, to obtain documentation on message 500, enter the
following command:

% explain ftn-500

The default msg_lvl is 3, which suppresses messages at the comment, note, and caution level. It is not possible
to suppress messages at the error level. To suppress specific comment, note, caution, and warning messages,
see -M msgs below.

To obtain messages regarding nonstandard Fortran usage, specify -e n. For more information about this option,
see -d disable_opt and -e enable_opt .

-M msgs
The -M msgs option suppresses specific messages at the warning, caution, note, and comment levels and can
change the default message severity to an error or a warning level. The severity of error-level messages with this
option cannot be suppressed or altered.

To suppress messages, specify one or more integer numbers that correspond to the Cray Fortran compiler
messages to suppress. To specify more than one message number, specify a comma (but no spaces) between
the message numbers. For example, -M 110,300 suppresses messages 110 and 300.

To change a message's severity to an error level or a warning level, specify an E (for error) or a W (for warning)
and then the number of the message. For example, consider the following option: -M 300,E600,W400. This
specification results in the following messages:

● Message 300 is disabled and is not issued, provided that it is not an error-level message by default. Error-
level messages cannot be suppressed and cannot have their severity downgraded.

● Message 600 is issued as an error-level message, regardless of its default severity.

● Message 400 is issued as a warning-level message, provided that it is not an error-level message by default.

-O [no]msgs
Default: -O nomsgs
The -O msgs option causes the compiler to write optimization messages to stderr.

Similar information in a more-readable format can be obtained by using the -rm option instead. Specifying the -
rm option enables -O msgs. For more information, see -h list=list_opt, -r list_opt.

-O [no]negmsgs
Default: -O nonegmsgs
The -O negmsgs option causes the compiler to generate messages to stderr that indicate why optimizations
such as vectorization or inlining did not occur in a given instance.

Compiler Command Line Options

 26

The -O negmsgs option enables the -O msgs option. The -rm option enables the -O negmsgs option.

-h ignore_unknown_dirs
Suppresses generation of warning messages when the compiler encounters an unknown directive.

-h error_on_warning
Default: off

The -h error_on_warning option changes the message level of all warning messages to error. This option is
off by default.

4.9 Miscellaneous Options
-c
Default: off

The -c option disables the link step and saves the binary object file version of the program in file.o, where
file is the name of the source file and .o is the suffix used. If there is more than one input file, a file.o is
created for each input file specified.

If only one input file is processed and neither the -b bin_obj_file nor the -c options are specified, the binary
version of the program is not saved after the link is completed.

If both the -b bin_obj_file and -c options are specified on the ftn command line, the link step is disabled
and the binary object file is written to the name specified as the argument to the -b bin_obj_file option. For
more information, see -b bin_obj_file.

If both the -o out_file and the -c option are specified on the ftn command line, the link step is disabled and
the binary file is written to the out_file specified as an argument to -o. For more information, see -o out_file.

-o out_file
The -o out_file option overrides the default executable file name, a.out, with the name specified by the
out_file argument.

If the -o out_file option is specified on the command line along with the -c option, the link step is disabled and
the binary file is written to the out_file specified as an argument to -o.

-h craylibs_arch_override
Forces Craymath to honor the processor architecture specified by the -h cpu option. Processor architecture is
typically specified by loading one of the targeting modules, e.g., craype-sandybridge, but can be overriden at
link time by using the -h cpu option. If the CRAYLIBS_ARCH_OVERRIDE environment variable is specified, it
takes precedence over this option.

Compiler Command Line Options

 27

-h [no]fp_trap
Default: fp_trap if traps are enabled using the -K trap option, or if -Ofp[0,1] is in effect. Otherwise, the
default is nofp_trap.

Controls whether the compiler generates code that is compatible with floating-point traps.

-h keepfiles
Default: off

Prevents the removal of the object (.o) and temporary assembly (.s) files after an executable is created.
Normally, the compiler automatically removes these files after linking them to create an executable. Since the
original object files are required to instrument a program for performance analysis, if CrayPat is to be used to
conduct performance analysis experiments, use this option to preserve the object files.

-h keep_frame_pointeropts
Default: off
Retain call stack information back to main entry point for CrayPat performance sampling. Prevents call stack
frame from being optimized out of a function so CrayPat performance sampling is able to trace call stack back to
entry point.

-h loop_trips=[tiny | small | medium | large | huge], -O
loop_trips=[tiny | small | medium | large | huge]
Specifies runtime loop trip counts for all loops in a compiled source file. This information is used to optimize the
runtime characteristics of the application.

-h pic, -h PIC
Generate position independent code (PIC), which allows a virtual address change from one process to another,
as is necessary in the case of shared, dynamically linked objects. The virtual addresses of the instructions and
data in PIC code are not known until dynamic link time. For the Cray implementation, the pic and PIC options
have the same effect and should be used to compile codes using more than 2GB of static memory, or for creating
dynamically linked libraries.

-K trap=exceptions
Default: off

Enable traps for the specified exceptions. By default, no exceptions are trapped. Enabling traps by using this
option also has the effect of setting -h [no]fp_trap.

If the specified options contradict each other, the last option predominates. For example, -K trap=none,fp is
equivalent to -Ktrap=fp.

This option does not affect compile time optimizations; it detects run time exceptions.

This option is processed only at link time and affects the entire program; it is not processed when compiling
subprograms. Use this command line option to set traps beginning with execution of the main program. The
program may subsequently change these settings by calling intrinsic or library procedures. If this option is used, -
hfp_trap may need to be specified when other files of the application are compiled.

Compiler Command Line Options

 28

denorm Trap on denormalized operands.

divz Trap on divide-by-zero.

fp Trap on divz, inv, or ovf exceptions.

inexact Trap on inexact result (i.e., rounded result). Enabling traps for inexact results is not recommended.

inv Trap on invalid operation.

none Disables all traps (default).

ovf Trap on overflow (i.e., the result of an operation is too large to be represented).

unf Trap on underflow (i.e., the result of an operation is too small to be represented).

-o outfile
Produces an absolute binary file named outfile. A file named a.out is produced by default. When this option is
used in conjunction with the -c option and a single source file, a relocatable object file named outfile is produced.

-R runchk
The -R runchk option allows any of a group of run time checks for the program to be specified. To specify more
than one type of checking, specify consecutive runchk arguments, such as: -R bs.

Performance is degraded when run time checking is enabled. This capability, though useful for debugging, is not
recommended for production runs.

The run time checks available are as follows:

runchk Checking performed

b Enables checking of array bounds. If a problem is detected at run time, a message is issued but
execution continues. The NOBOUNDS directive overrides this option. For more information, see
NOBOUNDS.

Bounds checking behavior differs with the optimization level. At the default optimization level, -O 2,
some run time checking is inhibited. Complete checking is guaranteed only when optimization is turned
off by specifying -O 0 on the ftn command line.

c Enables run time conformance checking of array or coarray operands in array expressions. Even
without the -Rc option, such checking is performed during compilation when the dimensions of array
operands can be determined.

d Enables directive checking at run time. Errors detected at compile time are reported during compilation
and so are not reported at run time. The collapse directive is checked, as are the loop_info
clauses min_trips and max_trips. Violation of a run time check results in an immediate fatal error
diagnostic.

p Generates run time code to check the association or allocation status of referenced POINTER
variables, ALLOCATABLE arrays, or assumed-shape arrays. A warning message is issued at run time
for references to disassociated pointers, unallocated allocatable arrays, or assumed shape dummy
arguments that are associated with a pointer or allocatable actual argument when the actual argument
is not associated or allocated.

s Enables checking of character substring bounds. This option behaves similarly to option -R b.

Compiler Command Line Options

 29

Bounds checking behavior differs with the optimization level. At the default optimization level, -O 2,
some run time checking is inhibited. Complete checking is guaranteed only when optimization is turned
off by specifying -O 0 on the ftn command line.

-S
Compiles the named source files and leaves their assembly language output in the corresponding files suffixed
with a .s. If this option is used with -G or -g, debugging information is not generated. This option takes
precedence over -c.

-V
Displays compiler version information. Version information consists of the product name, the version number, and
the current date and time.

Unlike all other command-line options, this option can be specified without specifying an input file name. If the
command line specifies no source file, no compilation occurs.

-X npes
Specifies the number of Fortran images in the program. The npes value must match the number of images that
will be specified through aprun or srun at job launch. Ensure that all object files are compiled using the same
npes value. When using mixed npes values or if the number of PEs provided at run time differs from the -X
npes value, a run time error will be received.

-W phase, "args"
Passes args directly to a phase of the compiling system. phase indicates a compiling system phase as shown:

Phase Compiling System Phase Command

0 (zero) Compiler ftn
a Assember as
c CUDA linker nvlink

l linker ld
r Lister ftnlx
x PTX assember ptxas

args to be passed to compiler system phases can be entered in either of two styles:

● args enclosed in double quotes. Spaces appear within args.

● args not enclosed in double quotes. No spaces appear within args. Commas can appear wherever spaces
normally appear; an option and its argument can be either separated by a comma or not separated.

If a comma is part of an argument, it must be preceded by the \ character.

For example, any of the following command lines would send -e name to the linker.

%ftn -Wl,"-e name" file.F08

Compiler Command Line Options

 30

%ftn -Wl,-e,name file.F08

% ftn -Wl,-ename file.F08

Because the preprocessor is built into the compiler, -Wp and -W0 are equivalent.

The -Wa"assembler_opt" option passes assembler_opt directly to the assembler. For example, -Wa"-
h" passes the -h option directly to the as command, directing it to enable all pseudos, regardless of location field
name. This option is meaningful to the system only when file.s is specified as an input file on the command line.
For more information about assembler options, see the as(1) man page.

The -Wl,-rpath ldir option changes the runtime library search algorithm to look for files in directory ldir at
link time. To request more than one library directory, specify multiple -rpath options. At link time, all ldir
arguments are added to the executable.

A library may be found at link time with a -L option, but may not be found at run time if a corresponding -Wl,-
rpath option was not supplied. Also, note that the compiler driver does not pass the -rpath option to the linker.
Explicitly specify -Wl,-rpath when using -L.

The dynamic linker will search all ldir paths first for shared dynamic libraries at runtime, with one exception. The
Linux environment variable LD_LIBRARY_PATH precedes all other search paths for shared dynamically linked
libraries. The use of LD_LIBRARY_PATH is discouraged! Setting LD_LIBRARY_PATH changes the shared
dynamically linked library search paths for all executable files in the environment.

The -Wr"lister_opt" option passes lister_opt directly to the ftnlx command. For example, specifying -
Wr"-o file.o" passes the argument cfile.o directly to the ftnlx command's -o option; this directs ftnlx to
override the default output listing and put the output file in cfile.o. If specifying the -Wr"lister_opt" option, specify
the -r list_opt option. For more information about options, see the ftnlx man page.

The -Wx, args option can be used to pass command line arguments to the PTX assembler for OpenACC
applications.

The -Wc, args option can be used to pass command line arguments to the CUDA linker for OpenACC
applications.

-Y phase, dirname
Specifies a new directory, dirname, from which the designated phase should be executed. phase indicates a
compiling system phase as shown:

Phase Compiling System Phase Command

0 (zero) Compiler ftn
a Assembler as
l Linker ld

Because there is no separate preprocessor, -Yp and -Y0 are equivalent.

Compiler Command Line Options

 31

4.10 Miscellaneous Fortran Specific Options

--
The -- symbol signifies the end of options. After this symbol, specify files to be processed. This symbol is optional.
It may be useful if the input file names begin with one or more dash (-) characters.

-A module_name[, module_name] ...
The -A module_name , module_name ... option directs the compiler to behave as if a USE module_name
statement was entered for each module_name in the Fortran source code. The USE statements are entered in
every program unit and interface body in the source file being compiled.

-b bin_obj_file
The -b bin_obj_file option disables the link step and saves the binary object file version of the program in
bin_obj_file.

Only one input file is allowed when the -b bin_obj_file option is specified. If there is more than one input file,
use the -c option to disable the link step and save the binary files to their default file names. If only one input file
is processed and neither the -b nor the -c option is specified, the binary version of the program is not saved after
the link is completed.

If both the -b bin_obj_file and -c options are specified on the ftn command line, the link step is disabled
and the binary object file is written to the name specified as the argument to the -b bin_obj_file option. For
more information about the -c option, see -c.

By default, the binary file is saved in file.o, where file is the name of the source file and .o is the suffix used.

-d disable_opt and -e enable_opt
The -d disable and -e enable options disable or enable compiling options. To specify more than one
compiling option, enter the options without separators between them; for example, -eaf. The Compiling Options
table below shows the arguments to use for disable or enable.

Table 5. Compiling Options

args Action, if enabled

0 Initializes all undefined local stack, static, and heap
variables to 0. If a user variable is of type character, it
is initialized to NUL. If a user variable is type logical, it
is initialized to false. The stack variables are initialized
upon each execution of the procedure. Enabling this
option can help identify problems caused by using
uninitialized numeric and logical variables. When used
in combination with -ei, Real and Complex variables
are initialized to signaling NaNs, while all other typed
objects are initialized to 0. Objects in common blocks
will be initialized if the common block is declared within
a BLOCKDATA program unit compiled with this option.

Compiler Command Line Options

 32

args Action, if enabled

Default: disabled

a Aborts compilation after encountering the first error.

Default: disabled

A Treat all module variables as PUBLIC. Does not
override explicit PRIVATE statements or attributes.
Disabling this option has the effect of including a
PRIVATE statement in the specification part of the
module.

Default: enabled

b If enabled, issue a warning message rather than an
error message when the compiler detects a call to a
procedure with one or more dummy arguments having
the TARGET, VOLATILE or ASYNCHRONOUS
attribute and there is not an explicit interface definition.

Default: disabled

B Generates binary output. If disabled, inhibits all
optimization and allows only syntactic and semantic
checking.

Default: enabled

c Interface checking: use Cray's system modules to
check library calls in a compilation. If there is a
procedure with the same name as one in the library,
errors will be received because the compiler does not
skip user-specified procedures when it performs the
checks.

Default: disabled

C Enable/disable some types of standard call site
checking. The current Fortran standard requires that
the number and types of arguments must agree
between the caller and callee. These constraints are
enforced in cases where the compiler can detect them,
however, specifying -dC disables some of this error
checking, which may be necessary in order to get
some older Fortran codes to compile.

If error checking is disabled, unexpected compile-time
or run time results may occur.

The compiler by default attempts to detect situations in
which an interface block should be specified but is not.
Specifying -dC disables this type of checking as well.

Compiler Command Line Options

 33

args Action, if enabled

Default: enabled

d Controls a column-oriented debugging feature when
using fixed source form. When the option is enabled,
the compiler replaces the D or d characters in column
1 of the source with a blank and treats the entire line
as a valid source line. This feature can be useful, for
example, during debugging to insert PRINT
statements.

When disabled, a D or d character in column 1 is
treated as a comment character.

Default: disabled

D The -eD option enables all debugging options. This
option is equivalent to specifying the -G0 with the -m2,
-r1, and -R bcdsp options. See also -ed.

Default: disabled

e Enable/disable masking expression support for non-
integer type operands. This allows masking
expressions to be evaluated without type conversion.
For example, with this enabled,

real_variable = real_variable .or.
another_real_variable

will be evaluated as a bitwise or and the assignment
will occur without type conversion. By default, the
compiler will turn .or. into the IOR intrinsic and type
conversion will occur when the value is assigned to the
real_variable. This option may not be supported in
all situations because of new compiler optimization
requirements.

Default: disabled

E The -eE option enables existing declarations to
duplicate the declarations contained in a used module.
Therefore, there is no need to modify the older code by
removing the existing declarations. Because the
declarations are not removed, the associated objects
will duplicate declarations already in the code, which is
not standard.

Existing declarations of a procedure must match the
interface definitions in the module; otherwise an error
is generated. Only existing declarations that declare

Compiler Command Line Options

 34

args Action, if enabled

the function name or generic name in an EXTERNAL
or type statement are allowable under this option.

This example illustrates some of the acceptable types
of existing declarations. Program older contains the
older code, while module m contains the interfaces to
check.

module m
interface
 subroutine one(r)
 real :: r
F end subroutine

 function two()
 integer :: two
 end function
end interface
end module

program older
use m !Or use -Am on the
compiler command line
external one !Use associated
objects
integer :: two !in declarative
statements

call one(r)
j = two()
end program

Default: disabled

f Turns .mod files into lowercase names for makefile
flexibility.

Default: disabled

F Controls preprocessor expansion of macros in Fortran
source lines.

Default: enabled

g Allows branching into the code block for a DO or DO
WHILE construct. Historically, codes used branches
out of and into DO constructs. Fortran standards
prohibit branching into a DO construct from outside of
that construct. By default, the Cray Fortran compiler
will issue an error for this situation. Cray does not
recommend branching into a DO construct, but if -eg
is specified, the code will compile.

Default: disabled

Compiler Command Line Options

 35

args Action, if enabled

h Enables support for 8-bit and 16-bit INTEGER and
LOGICAL types that use explicit kind or star values.

By default (-eh), data objects declared as
INTEGER(kind=1) or LOGICAL(kind=1) are 8 bits long,
and objects declared as INTEGER(kind=2) or
LOGICAL(kind=2) are 16 bits long. When this option is
disabled (-dh), data objects declared as
INTEGER(kind=1), INTEGER(kind=2),
LOGICAL(kind=1), or LOGICAL(kind=2) are 32 bits
long.

Vectorization of 8- and 16-bit objects is deferred.

Default: enabled

I Treats all variables as if an IMPLICIT NONE statement
had been specified. Does not override any IMPLICIT
statements or explicit type statements. All variables
must be typed.

Default: disabled

i Initializes all undefined local stack, static, and heap
variables of type REAL or COMPLEX to an invalid value
(signaling NaN). Stack variables are initialized upon
each execution of the procedure. Objects in common
blocks will be initialized if the common block is
declared within a BLOCKDATA program unit compiled
with this option.

Default: disabled

j Executes DO loops at least once.

Default: disabled

m When this option is enabled, the compiler
creates .mod files to hold module information for future
compiles. When it is disabled, and a module is
compiled, the compiler deletes any existing
MODULENAME.mod files it finds in the output directory
before creating new module information in the .o file.

By default, module files are written to the current
working directory. Use the -J dir_name option to
specify an alternate output directory for .mod files only.
For more information about the -J dir_name option,
-J dir_name, below.

Compiler Command Line Options

 36

args Action, if enabled

Whether this option is enabled or disabled, the search
order for satisfying modules references in USE
statements is as follows:

The current working directory.

Any directories or files specified with the -p option.

Any directories specified with the -I option.

Any directories or files specified with the
FTN_MODULE_PATH environment variable.

When searching within a directory, the compiler first
checks all .mod files, then the .o files, and then the .a
files.

The compiler creates modules through the MODULE
statement. A module is referenced with the USE
statement. All .mod files are named
modulename.mod, where modulename is the name
of the module specified in the MODULE or USE
statement.

Default: disabled

n Generates messages to note all nonstandard Fortran
usage.

Default: disabled

N -eN is the same as -en, except that the messages are
ERROR level.

If -dN is specified, ANSI messages are not generated.
This is the same as -dn.

If multiple -en, -dn, -eN, or -dN options are specified,
the last one encountered takes precedence.

Default: disabled

o Display to stderr the optimization options used by
the compiler for this compilation.

Default: disabled

p Controls double precision type. This option can only be
enabled when the default data size is 64 bits (-s
default64 or -s real64).

When -s default64 or -s real64 is specified, and
double precision arithmetic is disabled, DOUBLE
PRECISION variables and constants specified with the

Compiler Command Line Options

 37

args Action, if enabled

D exponent are converted to default real type (64-bit). If
double precision is enabled (-ep), they are handled as
a double precision type (128-bit).

Similarly when the -s default64 or -s real64
option is used, variables declared on a DOUBLE
COMPLEX statement and complex constants specified
with the D exponent are mapped to the complex type in
which each part has a default real type, so the complex
variable is 128-bit. If double precision is enabled (-ep),
each part has double precision type, so the double
complex variable is 256-bit.

P Performs source preprocessing on Fortran source files,
but does not compile (see sourcefile Suffix under for
valid file extensions). When specified, source code is
included by #include directives but not by Fortran
INCLUDE lines. Generates file.i, which contains
the source code after the preprocessing has been
performed and the effects have been applied to the
source program. For more information about source
preprocessing, see Source Preprocessing.

Default: disabled

q Aborts compilation if 100 or more errors are generated.

Default: enabled

Q Controls whether the compiler accepts variable names
that begin with a leading underscore (_) character. For
example, when Q is enabled, the compiler accepts
_ANT as a variable name. Enabling this option can
cause collisions with system name space, such library
entry point names.

Default: disabled

R Compiles all functions and subroutines as if they had
been defined with the RECURSIVE attribute.

Default: disabled

s Scales the values of the count and count_rate
arguments for the SYSTEM_CLOCK intrinsic function
down by a factor of 2 **14 (16384) if the storage size of
the value of each of the count and count-rate
argumens is 32 bits. Otherwise, no scaling occurs.

Default: enabled

Compiler Command Line Options

 38

args Action, if enabled

S Generates assembly language output and saves it in
file.s.

Default: disabled

T Controls preprocessing of Fortran source files. When
enabled, source preprocessing is performed. Macro
expansion within Fortran source lines is enabled but
can be controlled by the -e/d F command line option.
When disabled, -dT, preprocessing of the Fortran
source file is not performed, even for files with upper
case suffixes, like file.F90.

Default: When not specified, default is to honor the
case of the file name suffix, and other preprocessing
options such as -e/d Z -e/d P and -e/d F

v Allocates variables to static storage. These variables
are treated as if they had appeared in a SAVE
statement. The following types of variables are not
allocated to static storage: automatic variables
(explicitly or implicitly stated), variables declared with
the AUTOMATIC attribute, variables allocated in an
ALLOCATE statement, and local variables in explicit
recursive procedures. Variables with the
ALLOCATABLE attribute remain allocated on
procedure exit, unless explicitly deallocated, but they
are not allocated in static memory. Variables in explicit
recursive procedures consist of those in functions, in
subroutines, and in internal procedures within functions
and subroutines that have been defined with the
RECURSIVE attribute. The STACK compiler directive
overrides -ev; for more information about this compiler
directive, see STACK.

Default: disabled

w Enables support for automatic memory allocation for
allocatable variables and arrays that are on the left
hand side of intrinsic assignment statements.

Using this option may degrade run time performance,
even when automatic memory allocation is not needed.
It can affect optimizations for a code region containing
an assignment to allocatable variables or arrays; for
example, by preventing loop fusion for multiple array
syntax assignment statements with the same shape.

Default: enabled

Compiler Command Line Options

 39

args Action, if enabled

X If a module variable has initializers, implicit or explicit,
and the variable has greater than 10,000 elements to
be initialized, optionally create a new module
procedure to do the initialization at run time before
MAIN is called. Enabling this option may significantly
reduce compile time and reduce the size of the
executable for some code, while increasing execution
time. If performance is the only issue, disable this
option.

Default : enabled

z Initialize all memory allocated by Fortran ALLOCATE
statements to zero. This option applies only for the
current source file and should be specified for each
source file compilation where this behavior is desired.

Default: disabled

Z Performs source preprocessing and compilation on
Fortran source files (see sourcefile Suffix for valid file
extensions). When specified, source code is included
by #include directives and by Fortran INCLUDE lines.
Generates file.i, which contains the source code
after the preprocessing has been performed and the
effects applied to the source program. For more
information about source preprocessing, see Source
Preprocessing.

Default: disabled

-F
The -F option is obsolete and is supported for compatibility with legacy make files. Macro expansion is now
enabled by default. To disable macro expansion, use the -dF option.

For more information about source preprocessing, see Source Preprocessing.

-f source_form
The -f source_form option specifies whether the Fortran source file is written in fixed source form or free
source form. For source_form, enter free or fixed. The source_form specified here overrides any source form
implied by the source file suffix. A FIXED or FREE directive specified in the source code overrides this option (see
FREE and FIXED).

The default source form is fixed for input files that have the .f, .F, .for, or .FOR suffix. The default source form
is free for input files that have the .f90, .F90, .f95, .F95, .f03, .F03, .f08, .F08, .ftn, or .FTN suffix.
Note that the Fortran standard has declared fixed source form to be obsolescent.

If the file has a .F, .FOR, .F90, .F95, .F03, .F08, or .FTN suffix, the source preprocessor is invoked. See Source
Preprocessing about preprocessing.

Compiler Command Line Options

 40

-h byteswapio
The -h byteswapio option forces byte-swapping from big-endian to little-endian (or visa versa) of all input and
output files for direct and sequential unformatted I/O.

REAL(KIND=16) and COMPLEX(KIND=16) are not supported.

-h [no]contiguous
Default: -h nocontiguous
The -hcontiguous option declares that every assumed-shape array and array pointer target is contiguous,
whether or not they have a CONTIGOUS keyword, potentially increasing the range of permitted compiler
optimizations. By default, the compiler does not assume that all array pointers are pointers associated with
contiguous targets or that all assumed shape arrays are contiguous and there is no way to verify this at compile
time.

Use with caution. This additional level of compiler optimization is safe when the memory objects occupy
contiguous blocks of memory. Also, if there is potential for hidden dependencies between the memory locations
which the pointers are referring to, then do not use this option.

-h [no]contiguous_assumed_shape
Default: nocontiguous_assumed_shape
If contiguous_assumed_shape is specified, all assumed-shape dummy arguments are implicitly marked with
the CONTIGUOUS attribute.

-h [no]fp_trap
Default: fp_trap, if traps are enabled using the -K trap option, or if -Ofp[0,1] is in effect. Otherwise, the
default is nofp_trap.

Controls whether the compiler generates code that is compatible with floating-point traps.

-h [no]func_trace
Default: nofunc_trace

The -h func_trace option is for use only with CrayPat (Cray performance analysis tool). If this option is
specified, the compiler inserts CrayPat entry points into each function in the compiled source file. The names of
the entry points are:

__pat_tp_func_entry
__pat_tp_func_return

These are resolved by CrayPat when the program is instrumented using the pat_build command. When the
instrumented program is executed and it encounters either of these entry points, CrayPat captures the address of
the current function and its return address.

-h [no]second_underscore
Default: -h nosecond_underscore

Compiler Command Line Options

 41

The -h [no]second_underscore option controls the way in which external names are generated. By default,
the compiler generates external names in lower case and will add one trailing underscore (_). This behavior
matches the PGI Fortran compiler's external behavior. If -h second_underscore is specified, the compiler
adds a second trailing underscore if the original external name has any underscores in it. This behavior matches
the GNU compiler's external naming behavior.

-h page_align_allocate
The -h page_align_allocate option directs the compiler to force allocations of arrays larger than the
memory page size to be aligned on a page boundary. This option affects only the ALLOCATE statements of the
current source file; therefore it must be specified for each source file where this behavior is desired. Using this
option can improve DIRECTIO performance.

-J dir_name
The -J dir_name option specifies the directory to which file.mod files are written when the -e m option is
specified on the command line. By default, module files are written to the current working directory.

The compiler will automatically search the dir_name directory for modules to satisfy USE statements. An error is
issued if the -em option is not specified when the -J dir_name is used.

-N col
The -N col option specifies the line width for fixed- and free-format source lines. The value used for col
specifies the maximum number of columns per line.

For free form sources, col can be set to 132, 255, or 1023.

For fixed form sources, col can be set to 72, 80, 132, 255, or 1023.

Characters in columns beyond the col specification are ignored.

By default, lines are 72 characters wide for fixed-format sources and 255 characters wide for free-form sources.

-p module_site [,module_site]
The -p module_site option tells the compiler where to look for Fortran modules to satisfy USE statements.
The module_site argument specifies the name of a file or directory to search for modules. The module_site
specified can be a .mod file, .o (object) file, .a (archive) file, or a directory.

By default, module files are written to the current working directory. Alternatively, use the -J dir_name option
during compilation to specify an alternate output directory for .mod files only. The compiler will search for modules
stored in the directories specified using the -J dir_name option for the current compilation automatically; there
is no need to use the -p option explicitly to make the compiler do this. For more information, see -J dir_name.

The search order for satisfying module references in USE statements is as follows:

1. The current working directory (or -J dir_name directory, if specified).

2. Any directories or files specified with the -p option.

3. Any directories with the -I option.

4. Any directories or files specified with the FTN_MODULE_PATH environment variable.

Compiler Command Line Options

 42

When searching within a directory, the compiler first searches the .mod files, then the .o files, then the .a files,
and then the directories, in the order specified.

File name substitution (such as *.o) is not allowed. If the path name begins with a slash (/), the name is assumed
to be an absolute path name. Otherwise, it is assumed to be a path name relative to the working directory. Specify
multiple module_site locations with the -p option either by separating them with commas or by using a
separate -p argument for each module_site. There is no limit on the number of -p options to be specified.

Cray provides some modules as part of the Cray Fortran Compiler Programming Environment. These are referred
to as system modules. The system files containing these modules are searched last.

Consider the following command line:

% ftn -p steve.o -p mike.o joe.f
Assume that steve.o contains a module called Rock and mike.o contains a module called
Stone. A reference to use Rock in joe.f causes the compiler to use Rock from steve.o. A
reference to Stone in joe.f causes the compiler to use Stone from mike.o.

The following example specifies binary file murphy.o and library file molly.a:

% ftn -p murphy.o -p molly.a prog.f

In this example, assume that the following directory structure exists in the home directory:

 programs
 / | \
 tests one.f two.f
 |
use_it.f

The following module is in file programs/one.f, and the compiled version of it is in programs/one.o:

MODULE one
INTEGER i
END MODULE

The next module is in file programs/two.f, and the compiled version of it is in programs/two.o:

MODULE two
INTEGER j
END MODULE

The following program is in file programs/tests/use_it.f:

PROGRAM demo
USE one
USE two
. . .
END PROGRAM

Compiler Command Line Options

 43

To compile use_it.f, enter the following command from the home directory, which contians the subdirectory
programs:

% ftn -p programs programs/tests/use_it.f

In the next set of program units, a module is contained within the first program unit and accessed
by more than one program unit. The first file, progone.f, contains the following code:

MODULE split
INTEGER k
REAL a
END MODULE

PROGRAM demopr
USE split
INTEGER j
j = 3
k = 1
a = 2.0
CALL suba(j)
PRINT *, 'j=', j
PRINT *, 'k=', k
PRINT *, 'a=', a
END

The second file, progtwo.f, contains the following code:

SUBROUTINE suba(1)
USE split
INTEGER 1
1 = 4
k = 5
CALL subb (1)
RETURN
END

SUBROUTINE subb(m)
USE split
INTEGER m
m = 6
a = 7.0
RETURN
END

Use the following command line to compile the two files with one ftn command and a relative
pathname:

% ftn -p progone.o progone.f progtwo.f
When the -e m option is in effect, use the -p module_site option to specify one or more
directories that contain module files rather than specifying every individual module file name.

Compiler Command Line Options

 44

-Q path
The -Q path option specifies the directory that will contain all saved nontemporary files from this compilation (for
example, all .o and .mod files). Specific file types (like .o files) are saved to a different directory if the -b, -J, -o, or -
eS option is specified.

The following examples use this directory structure:

 current_dir

bin_out mod_out all_out

The following example saves all nontemporary files (x.o and any .mod files) in the current directory:

% ftn -b x.o -em x.f90

The following example saves all nontemporary files in the all_out directory and x.o in the current directory:

% ftn -Q all_out -em -b x.o x.f90

The following example saves the x.o file to the bin_out and all .mod files to the all_out directory:

% ftn -Q all_out -b bin_out/x.o -em x.f90

The following example saves the a.out file to the all_out and all .mod files to the mod_out directory:

% ftn -Q all_out -J mod_out x.f90

-s size
The -s size option allows the modification of the sizes of variables, literal constants, and intrinsic function
results declared as type REAL, INTEGER, LOGICAL, COMPLEX, DOUBLE COMPLEX, or DOUBLE
PRECISION. Use one of the following values for size:

size Action

byte_pointer (Default) Applies a byte scaling factor to integers used
in pointer arithmetic involving Cray pointers. That is,
Cray pointers are moved on byte instead of word
boundaries. Pointer arithmetic scaling is explained in
Pointer Scaling Factor.

default32 (Default) Adjusts the data size of default types as
follows:

● 32 bits: REAL, INTEGER, LOGICAL

● 64 bits: COMPLEX, DOUBLE PRECISION

● 128 bits: DOUBLE COMPLEX

Compiler Command Line Options

 45

size Action

The data sizes of integers and logicals that use
explicit kind and star values are not affected by this
option. However, they are affected by the -e h
option. See -d disable_opt and -e enable_opt

default64 Adjust the data size of default types as follows:

● 64 bits: REAL, INTEGER, LOGICAL

● 64 bits: DOUBLE PRECISION (implied -dp)

● 128 bits: COMPLEX

● 128 bits: DOUBLE COMPLEX (implied -dp)

If the -s default64 is used at compile time, specify
this option when invoking the ftn command.

The data sizes of integers and logicals that use
explicit kind and star values are not affected by this
option. However, they are affected by the -dh
option. See -d disable_opt and -e enable_opt

integer32 (Default) Adjusts the default data size of default
integers and logicals to 32 bits.

integer64 Adjusts the default data size of default integers and
logicals to 64 bits.

real32 (Default) Adjusts the default data size of default real
types as follows:

● 32 bits: REAL

● 64 bits: COMPLEX and DOUBLE PRECISION

● 128 bits: DOUBLE COMPLEX

real64 Adjusts the default data size of default real types as
follows:

● 64 bits: REAL

● 64 bits: DOUBLE PRECISION (implied -dp)

● 128 bits: COMPLEX

● 128 bits: DOUBLE COMPLEX (implied -dp)

word_pointer Applies a word scaling factor to integers used in
pointer arithmetic involving Cray pointers. That is, Cray
pointers are moved on word instead of byte
boundaries. Pointer arithmetic scaling is explained later
in Pointer Scaling Factor.

Compiler Command Line Options

 46

The default data size options (for example, -s default64) option do not affect the size of explicitly declared
data (for example, REAL(KIND=4) X).

REAL(KIND=16) and COMPLEX(KIND=16) support 128-bit floating point and 256-bit complex types, sometimes
referred to as quad-precision. See 128-Bit Precision.

Different Default Data Size Options on the Command Line
Be careful when mixing different default data size options on the same command line because equivalencing data
of one default size with data of another default size can cause unexpected results. For example, assume that the
following command line is used for a program:

% ftn -s default64 -s integer32 ...

The mixture of these default size options causes the program below to equivalence 32-bit integer data with 64-bit
real data and to incompletely clear the real array.

Program test
 IMPLICIT NONE

 real r
 integer i
 common /blk/ r(10), i(10)
 integer overlay(10)

 equivalence (overlay, r)

 call clear(overlay)
 call clear(i)

contains
subroutine clear(i)
 integer, dimension (10) :: i

 i = 0
end subroutine

end program test

The above program sets only the first 10 32-bit words of array r to zero. It should instead set 10 64-bit words to
zero.

Pointer Scaling Factor
Cray_ptr = Cray_ptr + integer_value

as

Cray_ptr = Cray_ptr + (integer_value * scaling_factor)

The scaling factor is dependent on the size of the default integer and which scaling option (-s byte_pointer or
-s word_pointer) is enabled.

Compiler Command Line Options

 47

Table 6. Scaling Factor in Pointer Arithmetic

Scaling Options Default Integer Size Scaling Factor

-s byte_pointer 32 or 64 bits 1

-s word_pointer and -s
default32 enabled

32 bits 4

-s word_pointer and -s
default64 enabled

64 bits 8

Therefore, when the -s byte_pointer option is enabled, this example increments ptr by i bytes:

pointer (ptr, ptee) !Cray pointer

ptr = ptr + i

When the -s word_pointer and -s default32 options are enabled, the same example is viewed by the
compiler as:

ptr = ptr + (4*i)

When the -s word_pointer and -s default64 options are enabled, the same example is viewed by the
compiler as:

ptr = ptr + (8*i)

-T
The -T option disables the compiler but displays all options currently in effect. The Cray Fortran compiler
generates information identical to that generated when the -v option is specified on the command line; when -T
is specified, however, no processing is performed. When this option is specified, output is written to the standard
error file (stderr).

4.11 Performance Tool Options
-h [no]func_trace
Default: nofunc_trace
The -h func_trace option is for use only with CrayPat (Cray performance analysis tool). If this option is
specified, the compiler inserts CrayPat entry points into each function in the compiled source file. The names of
the entry points are:

__pat_tp_func_entry
__pat_tp_func_return

Compiler Command Line Options

 48

These are resolved by CrayPat when the program is instrumented using the pat_build command. When the
instrumented program is executed and it encounters either of these entry points, CrayPat captures the address of
the current function and its return address.

-h keepfiles
The -h keepfiles option prevents the removal of the object (.o) and temporary assembly (.s) files after an
executable is created. Normally, the compiler automatically removes these files after linking them to create an
executable. Use this option to preserve the object files required by CrayPat to instrument a program for
performance analysis experiments.

-h keep_frame_pointer
Default: off

Retain call stack information back to main entry point for CrayPat performance sampling. Prevents call stack
frame from being optimized out of a function so CrayPat performance sampling is able to trace call stack back to
entry point.

-h [no]omp_trace
Default: -h noomp_trace
The -h omp_trace option turns the insertion of the CrayPat OpenMP tracing calls on or off.

4.12 Preprocess Options

-D identifier=value
The -D identifier=value option defines variables used for source preprocessing as if they had been defined
by a #define source preprocessing directive. If a value is specified, there can be no spaces on either side of the
equal sign (+). If no value is specified, the default value of 1 is used.

The -U option undefines variables used for source preprocessing. If both -D and -U are used for the same
identifier, in any order, the identifier is undefined.

This option is ignored unless one of the following conditions is true:

● The Fortran input source file is specified as either file.F, file.F90, file.F95, file.F03, file.F08, or
file.FTN.

● The -eP or -eZ options have been specified.

For more information about source preprocessing, see Source Preprocessing.

-I incldir
Directories for #include "file" are searched in the following order:

1. Directory of the input file. Note that the input file is not always in the current working directory. The input file is
searched, not the current working directory, if they differ. If the user wants the current working directory
searched, the -I option should be added to the command line.

Compiler Command Line Options

 49

2. Directories named in -I options, in command-line order.

3. Site-specific and compiler release-specific include files directories.

Directories for #include <file> are searched in the following order:

1. Directories named in -I options, in command-line order.

2. Site-specific and compiler release-specific include files directories.

If the -I option specifies a directory name that does not begin with a slash (/), the directory is interpreted as
relative to the current working directory and not relative to the directory of the input file, if different from the current
working directory.

The -I incldir option specifies a directory to be searched for files named in INCLUDE lines in the Fortran
source file and for files named in #include source preprocessing directives. Additionally, all user-specified -I
incldir directories are searched for MODULE USE resolution after all user-specified -p paths are searched.

An -I option must be specified for each directory to be searched. Directories can be specified in incldir as full
path names or as path names relative to the working directory. By default, only the directory of the file referencing
the included file and system directories are searched. None of the system-specified -I incldir directories are
searched during MODULE USE resolution.

The following example causes the compiler to search for files included within earth.f in the
directories /usr/local/dir and ../moon:

% ftn -I /usr/local/dir -I ../moon earth.f

If the INCLUDE line or #include directive in the source file specifies an absolute name (that is, one that begins
with a slash (/)), that name is used, and no other directory is searched. If a relative name is used (that is, one that
does not begin with a slash (/)), the compiler searches for the file in the directory of the source file containing the
INCLUDE line or #include directive. If this directory contains no file of that name, the compiler then searches the
directories named by the -I options, as specified on the command line, from left to right.

-U identifier ,identifier...
The -U identifier ,identifier ... option undefines variables used for source preprocessing. This option
removes the initial definition of a predefined macro or sets a user predefined macro to an undefined state.

The -D identifier =value option defines variables used for source preprocessing. If both -D and -U are
used for the same identifier, in any order, the identifier is undefined.

This option is ignored unless one of the following conditions is true:

● The Fortran input source file is specified as either file.F, file.F90, file.F95, file.F03, file.F08, or
file.FTN.

● The -e P or -e Z options have been specified.

For more information about source preprocessing, see Source Preprocessing.

-x dirlist
The -x dirlist option disables specified directives or specified classes of directives. If specifying a multiword
directive, either enclose the directive name in quotation marks or remove the spaces between the words in the
directive's name.

Compiler Command Line Options

 50

For dirlist, enter one of the following arguments:

dirlist Item disabled

all All compiler directives and OpenMP Fortran directives. For information about the OpenMP,
see OpenMP Overview.

dir All compiler directives.

directive One or more compiler directives or OpenMP Fortran directives. If specifying more than one,
separate them with commas; for example: -x INLINEALWAYS,"NO SIDE
EFFECTS",BOUNDS.

omp All OpenMP Fortran directives

acc All OpenACC Fortran directives.

conditional_omp All C$ and !$ conditional compilation lines.

4.13 Program Model Specific Options
-h [no]acc
Default: -h acc
Enables or disables compiler recognition of OpenACC directives (!$acc sentinel).

-h [no]caf
Default: -h caf
Enable the compiler to recognize coarray syntax. The macro _CRAY_COARRAY will be defined as 1 if -hcaf is
specified on the command line.

Note that -hnocaf is required for Fortran code when it will be linked with C++ code.

-h [no]caf is not supported in the Envoy environment.

-h mpin, -O mpin
Default: mpi0
Enables or disables optimization of MPI operations. mpi1 enables this option.

-h [no]omp, -O [no]omp
Default: -h omp if -O1 or higher is implied or specified.

Enables or disables compiler recognition of OpenMP directives. Using the -h [no]omp option is similar to the -h
thread0 option, in that it disables OpenMP, but unlike -h thread0, it does not affect autothreading. The -h
[no]omp option is identical to the -O [no]omp option and is provided for command-line compatibility with the
Cray C compiler. If -O0 is implied or specified then -h noomp is implied.

Compiler Command Line Options

 51

4.14 Scalar Optimization Options
-h [no]interchange, -O [no]interchange
Default: interchange
This option allows the compiler to attempt to interchange all loops - a technique that is used to improve
performance by having the compiler swap an inner loop with an outer loop. The compiler attempts the interchange
only if the interchange will increase performance. Loop interchange is performed only at scalar optimization level
2 or higher.

To disable interchange of loops individually, use the nointerchange directive prior to the loop.

nointerchange inhibits the compiler's attempts to interchange loops.

Specifying the nointerchange option is equivalent to specifying a NOINTERCHANGE directive prior to every
loop. To disable loop interchange on individual loops, use the NOINTERCHANGE directive.

-h scalarn, -O scalarn
Default: scalar2
Specifies the level of automatic scalar optimization to be performed. Scalar optimization directives are unaffected
by this option. The values for n are:

0 Minimal automatic scalar optimization. Implies -h zeroinc.

1 Conservative automatic scalar optimization. Implies -h nozeroinc.

2 Aggressive automatic scalar optimization. The scalar optimizations that provide the best application
performance are used, with some limitations imposed to allow for faster compilation times.

3 Very aggressive optimization; compilation times may increase significantly.

-h [no]zeroinc , -O [no]zeroinc
Default: -h nozeroinc
The -h nozeroinc option improves run time performance by causing the compiler to assume that constant
increment variables (CIVs) in loops are not incremented by expressions with a value of 0.

It is identical to the -O [no]zeroinc option.

The -h zeroinc option causes the compiler to assume that some constant increment variables (CIVs) in loops
might be incremented by 0 for each pass through the loop, preventing generation of optimized code.

-h zeroinc can cause less strength reduction to occur in loops that have variable increments.

A CIV is a variable that is incremented only by a loop invariant value. For example, in a loop with variable J, the
statement J = J + K, where K can be equal to zero, J is a CIV.

Compiler Command Line Options

 52

4.15 Target Options
-h cpu=target_system
Specifies the Cray system on which the absolute binary file is to be executed, where target_system can be
either x86-64 or opteron (single or dual-core), barcelona or shanghai (quad-core), istanbul (6-core), mc8 (8-core),
mc12 (12-core), interlagos (16-core), interlagos-cu (8-compute unit), abudhabi (16-core) , abudhabi-cu (8-
compute unit), ivybridge, sandybridge, haswell, broadwell, mic-knl, and arm-thunderx.

The interlagos and abudhabi processors contain up to 8 compute units, each of which contains two integer cores
and a shared FPU. These targets assume that the user intends to run with one thread per core (up to 16 per
processor), while the cpu-cu target assumes that the user intends to run with one thread per compute unit (up to
8 per processor or one thread per FPU).

Rather than setting this option directly, users should load one of the targeting modules (craype-mc12 or craype-
interlagos-cu, for example). The targeting modules set CRAY_CPU_TARGET and define paths to the corresponding
libraries. The compiler driver script translates CRAY_CPU_TARGET to the corresponding cpu= option when calling
the compiler.

If the target_system is set during compilation of any source file, it must also be set to that same target during
linking and loading. If a user wishes to override the current target_system value set by the module environment
(via the CRAY_CPU_TARGET definition), they should do so by specifying -hcpu=target_system on the
compiler command line.

-h network=nic
Specifies the target machine's system interconnection network. Currently, supported values for nic are gemini
and aries.

Rather than setting this option directly, users should load one of the network modules (craype-network-aries for
example). The network modules cause the corresponding compiler option to be set and define paths to the
corresponding libraries.

4.16 Vector Optimization Options
-h concurrent
The -h concurrent option indicates that no data dependence exists between array references of the same
loop, for every loop in the file. This can be useful for vectorization optimizations. Equivalent to adding a
CONCURRENT directives before every loop in the file, including loops created from array syntax.

-h vectorn, -O vectorn
Default: vector2
The vectorn option specifies the level of automatic vectorizing to be performed. Vectorization results in
significant performance improvements with a small increase in object code size. Vectorization directives are
unaffected by this option. The values for n:

Compiler Command Line Options

 53

0 No automatic vectorization. Characteristics include low compile time and small compile size. This option is
compatible with all scalar optimization levels.

1 Specifies conservative vectorization. Characteristics include moderate compile time and size. Loop nests are
restructured. No vectorizations that might create false exceptions are performed. Results may differ slightly
from results obtained when -h vector0 is specified because of vector reductions. The -h vector1 option
is compatible with -h scalar1, -h scalar2, and -h scalar3.

2 Specifies moderate vectorization. Characteristics include moderate compile time and size. Loop nests are
restructured. Compatible with -h scalar2 and -h scalar3.

3 Specifies aggressive vectorization. Characteristics include potentially high compile time and size. Loop nests
are restructured. Vectorizations that might create false exceptions in rare cases may be performed.

-h [no]preferred_vector_width[=[64 | 128 | 256 | 512]]
Specifies the preferred vector width to use when vectorizing loops. This option does not guarantee that the
specified vector width will be used, only that it is preferred. The optimizer is still free to choose a smaller width if it
is expected to perform better. As the set of acceptable width is target-sensitive and fairly complicated, the
optimizer diagnoses any illegal values.

A value is not required when specifying nopreferred_vector_width.

This argument can also be passed in to the OPTIMIZE directive, as described in OPTIMIZE.

Compiler Command Line Options

 54

5 Set Environment Variables to the Cray Fortran
Compiler

Environment variables are predefined shell variables, taken from the execution environment, that determine some
of the shell characteristics. Several environment variables pertain to the Cray Fortran compiler. The Cray Fortran
compiler recognizes general and multiprocessing environment variables.

The multiprocessing variables in the following sections affect the way the program will perform on multiple
processors. Use environment variables to tune the system for parallel processing without rebuilding libraries or
other system software.

The variables allow for controlling parallel processing at compile time and at run time. Compile time environment
variables apply to all compilations in a session.

The following examples show how to set an environment variable:

● With the standard shell, enter:

CRAY_FTN_OPTIONS=options
export CRAY_FTN_OPTIONS

● With the C shell, enter:

setenv CRAY_FTN_OPTIONS options

The following sections describe the environment variables recognized by the Cray Fortran compiler.

Many of the environment variables described in this chapter refer to the default system locations of Programming
Environment components. If the Cray Fortran Compiler Programming Environment has been installed in a non-
default location, see the system support staff for path information.

CRAY_FTN_OPTIONS
The CRAY_FTN_OPTIONS environment variable specifies additional options to attach to the command line. This
option follows the options specified directly on the command line. File names cannot appear. These options are
inserted at the rightmost portion of the command line before the input files and binary files are listed. This allows
the environment variable to be set once and have the specified set of options used in all compilations. This is
especially useful for adding options to compilations done with build tools.

For example, assume that this environment variable was set as follows:

setenv CRAY_FTN_OPTIONS -G0

With the variable set, the following two command line specifications are equivalent:

% ftn -c t.f
% ftn -c -G0 t.f

Set Environment Variables to the Cray Fortran Compiler

 55

FORTRAN_MODULE_PATH
Like the Cray Fortran compiler -p module_site command line option, this environment variable allows for the
specification of the files or the directory to search for the modules to use. The files can be archive files, build files
(bld file), or binary files.

The compiler appends the paths specified by the FORTRAN_MODULE_PATH environment variable to the path
specified by the -p module_site command line option.

Since the FORTRAN_MODULE_PATH environment variable can specify multiple files and directories, a colon
separates each path as shown in the following example:

% set FORTRAN_MODULE_PATH='path1 : path2 : path3'

LISTIO_PRECISION
The LISTIO_PRECISION environment variable controls the number of digits of precision printed by list-directed
output. The LISTIO_PRECISION environment variable can be set to FULL or PRECISION.

● FULL prints full precision (default).

● PRECISION prints x or x + 1 decimal digits, where x is the value of the PRECISION intrinsic function for a
given real value. This is a smaller number of digits, which usually ensures that the last decimal digit is
accurate to within 1 unit. This number of digits is usually insufficient to assure that subsequent input will
restore a bit-identical floating-point value.

NLSPATH
The NLSPATH environment variable specifies the message system library catalog path. This environment variable
affects compiler interactions with the message system. For more information about this environment variable, see
the catopen(3) man page.

NPROC
The NPROC environment variable specifies the maximum number of processes to be run. Setting NPROC to a
number other than 1 can speed up a compilation if machine resources permit.

The effect of NPROC is seen at compilation time, not at execution time. NPROC requests a number of
compilations to be done in parallel. It affects all the compilers and also the make command.

For example, assume that NPROC is set as follows:

setenv NPROC 2

The following command is entered:

ftn -o t main.f sub.f

In this example, the compilations from .f files to .o files for main.f and sub.f happen in parallel, and when both
are done, the link step is performed. If NPROC is unset, or set to 1, main.f is compiled to main.o; sub.f is compiled
to sub.o, and then the link step is performed.

The NPROC can be set to any value, but large values can overload the system. For debugging purposes,
NPROC should be set to 1. By default, NPROC is 1.

Set Environment Variables to the Cray Fortran Compiler

 56

ZERO_WIDTH_PRECISION
The ZERO_WIDTH_PRECISION environment variable controls the field width when field width w of Fw.d is zero on
output. The ZERO_WIDTH_PRECISION environment variable can be set to PRECISION or HALF.

● PRECISION specifies that full precision will be written. This is the default.

● HALF specifies that half of the full precision will be written.

Run Time Environment Variables
Run time environment variables allow for adjusting the following elements of the run time environment:

● CRAY_ACC_DEBUG

○ Write accelerator-related activity to stdout for debugging purposes. Valid output levels range from 0,
which indicates no output, through 3, which indicates verbose.

○ Default: 0

● CRAY_AUTO_APRUN_OPTIONS

○ Default options for automatic aprun. See the aprun(1) man page.'

● CRAY_RANK_THREAD_PREFIX

○ Prepend a string identifying mpi rank and omp thread id to each line written to stdout and stderr.

● CRAY_MALLOPT_OFF (Only relevant if -hsystem_alloc is specified)

○ If set, then the system default mallopt parameters are used, instead of the compiler default parameters.
For most programs, run time performance is improved by using the compiler defaults, but more memory
may be used.

● FORMAT_TYPE_CHECKING

○ The FORMAT_TYPE_CHECKING environment variable specifies various levels of conformance between
the data type of each I/O list item and the formatted data edit descriptor.

○ When set to RELAXED, the run time I/O library enforces limited conformance between the data type of
each I/O list item and the formatted data edit descriptor.

○ When set to STRICT77, the run time I/O library enforces strict FORTRAN 77 conformance between the
data type of each I/O list item and the formatted data edit descriptor.

○ When set to STRICT90 or STRICT95, the run time I/O library enforces strict Fortran 90/95 conformance
between the data type of each I/O list item and the formatted data edit descriptor.

○ See the following tables:

▪ Default Compatibility Between I/O List Data Types and Data Edit Descriptors

▪ RELAXED Compatibility Between Data Types and Data Edit Descriptors

▪ STRICT77 Compatibility Between Data Types and Data Edit Descriptors

▪ STRICT90 or STRICT95 Compatibility Between Data Types and Data Edit Descriptors

● MALLOC_MMAP_MAX_ (Only relevant if -hsystem_alloc is specified)

○ Specifies the maximum number of memory chunks to allocate with mmap. The compiler default value is 0.
For most programs, run time performance is improved by using the compiler default, but more memory
may be used.

Set Environment Variables to the Cray Fortran Compiler

 57

● MALLOC_TRIM_THRESHOLD_ (Only relevant if -hsystem_alloc is specified)

○ Specifies the minimum size of the unused memory region at the top of the heap before the region is
returned to the operating system. The compiler default value is 536870912 bytes. For most programs, run
time performance is improved by using the compiler default, but more memory may be used.

● NO_STOP_MESSAGE

○ If set, and if the STOP stop_code statement in the Fortran code does not specify the optional
stop_code, then STOP messages are not produced when this statement is executed.

● PGAS_ERROR_FILE

○ Specifies the location to which libpgas (the library which provides an interface to the internal system
network) error messages are written. The default is stderr. If stdout is specified, errors will be written
to standard output.

● TMPDIR

○ Compiler temporary files and user scratch files are placed in the directory specified by the TMPDIR
environment variable.

● CRAYLIBS_ARCH_OVERRIDE

○ Override the default Cray math library run time selection and specify the library to use by CPU
architecture. The valid options are: haswell, ivybridge, sandybridge, interlagos, abudhabi,
interlagos-cu, abudhabi-cu, mc8, mc12, istanbul, shanghai, barcelona, opteron, x86-64
or mic-knl.

Can be used to specify that a lowest-common-denominator math library be used instead of the default
selection, thus ensuring that identical computations produce identical results regardless of the type of
compute node CPU actually used. The trade-off is that specifying an older library may affect performance
on a newer CPU. For example, if ivybridge is specified, the code will run and produce identical results
on a haswell compute node, but performance may be reduced.

Default: If not set, the library specific to the type of CPU selected at run time is used.

aprun Resource Limits
The aprun command always forwards its own core and cpu resource limits (RLIMIT_CPU and RLIMIT_CORE) to
the compute nodes where those limits are set for the application. If a -m value is specified, RLIMIT_RSS is also
forwarded.

If the APRUN_XFER_LIMITS run time environment variable is set to a non-zero value, the following resource
limits are also forwarded:

● RLIMIT_FSIZE
● RLIMIT_DATA
● RLIMIT_STACK
● RLIMIT_RSS
● RLIMIT_NPROC
● RLIMIT_NOFILE
● RLIMIT_MEMLOCK
● RLIMIT_AS

Set Environment Variables to the Cray Fortran Compiler

 58

● RLIMIT_LOCKS
● RLIMIT_SIGPENDING
● RLIMIT_MSGQUEUE
● RLIMIT_NICE
● RLIMIT_RTPRIO
This forwarding is diasbled by default.

This forwarding of user resource limits can cause problems on systems where the login node's limits are more
restrictive than the default compute node limits.

Set Environment Variables to the Cray Fortran Compiler

 59

6 Cray Fortran Directive Use
Directives are lines inserted into source code that specify actions to be performed by the compiler. They are not
Fortran statements.

If a directive is specified while running on a system that does not support that particular directive, the compiler
generates a message and continues with the compilation.

Directive Lines
A directive line begins with the characters CDIR$ or !DIR$, unless otherwise noted. These leading characters are
sometimes referred to as a sentinel.

OpenMP directives are indicated using the !OMP$ sentinel. OpenACC directives are indicated with the !ACC$
sentinel.

How to specify directives depends on the source form being used, as follows:

● If using fixed source form, indicate a directive line by placing the characters CDIR$ or !DIR$ in columns 1
through 5. If the compiler encounters a nonblank character in column 6, the line is assumed to be a directive
continuation line. Columns 7 and beyond can contain one or more directives. Characters in directives entered
in columns beyond the default column width are ignored.

● If using free source form, indicate a directive by the characters !DIR$, followed by a space, and then one or
more directives. If the position following the !DIR$ contains a character other than a blank, tab, or newline
character, the line is assumed to be a continuation line. The !DIR$ need not start in column 1, but it must be
the first text on a line.

In the following example, an asterisk (*) appears in column 6 to indicate that the second line is a continuation
of the preceding line:

!DIR$ NOSIDEEFFECTS
!DIR$*ab

The FIXED and FREE directives must appear alone on a directive line and cannot be continued.

To specify more than one directive on a line, separate each directive with a comma. Some directives require
specification of one or more arguments; when specifying a directive of this type, no other directive can appear
on the line.

Spaces can precede, follow, or be embedded within a directive, regardless of source form.

Code portability is maintained despite the use of directives. In the following example, the ! symbol in column 1
causes other compilers to treat the Cray Fortran compiler directive as a comment:

 A=10.
!DIR$ NOVECTOR
 DO 10,I=1,10...

Cray Fortran Directive Use

 60

Do not use source preprocessor (#) directives within multiline compiler directives (CDIR$ or !DIR$).

6.1 Inline and Clone Directives
inline
!DIR$ INLINE
!DIR$ NOINLINE
!DIR$ RESETINLINE
!DIR$ INLINEALWAYS [name [,name] ...]
!DIR$ INLINENEVER [name [,name] ...]
Inlining replaces calls to user-defined functions with the code that represents the function. This can improve
performance by saving the expense of the function call overhead. It also increases the possibility of additional
code optimization. Inlining may increase object code size.

Enabling inlining instructs the compiler to attempt to inline functions at call sites. Resetting inlining returns the
inlining state to the state specified on the command line (-h ipan or -O ipan).

The enabling/disabling directives remain in effect until the opposite directive is encountered, or until a reset
directive is encountered, or until the end of the program unit.

The always directive specifies functions that the compiler should always attempt to inline. If the directive is
placed in the definition of the function, inlining is attempted at every call site to that function in the entire input file
being compiled. If the directive is placed in a function other than the definition, inlining is attempted at every call
site to name within the specific function containing the directive. The never directive specifies functions that
should not be inlined. If the directive is placed in the definition of the function, inlining is never attempted at any
call site to that function in the entire input file being compiled. If the directive is placed in a function other than the
definition, inlining is never attempted at any call site to name within the specific function containing the directive.
An error message is issued if both never and always are specified for the same procedure in the same program
unit.

INLINEALWAYS, INLINENEVER Directive

SUBROUTINE S()
!DIR$ INLINEALWAYS S ! THIS SAYS ATTEMPT
! INLINING OF S AT ALL CALLS.
...
END SUBROUTINE
SUBROUTINE T
!DIR$ INLINENEVER S ! DO NOT INLINE ANY CALLS TO S
! IN SUBROUTINE T.
CALL S()
...
END SUBROUTINE
SUBROUTINE V
!DIR$ NOINLINE ! HAS HIGHER PRECEDENCE THAN INLINEALWAYS.
CALL S() ! DO NOT INLINE THIS CALL TO S.
!DIR$ INLINE
CALL S() ! ATTEMPT INLINING OF THIS CALL TO S.
...
END SUBROUTINE

Cray Fortran Directive Use

 61

SUBROUTINE W
CALL S() ! ATTEMPT INLINING OF THIS CALL TO S.
...
END SUBROUTINE

CLONE
!DIR$ CLONE
!DIR$ NOCLONE
!DIR$ RESETCLONE
!DIR$ CLONEALWAYS [name [,name] ...]
!DIR$ CLONENEVER [name [,name] ...]
Cloning is the creation of a duplicate procedure. The compiler clones when it detects characteristics of the call
that will likely lead to a better optimized routine. This includes things like constant actual arguments, the passing
of contiguous arrays when the compiler cannot so determine from the callee, non-present OPTIONAL dummy
arguments, etc.

NOCLONE disables all cloning. CLONE forces cloning if a condition exists to clone.

RESETCLONE returns the cloning to the state specified on the compiler command line. The cloning directives
remain in effect until a different cloning directive is encountered or until the end of the program unit. Use -
hnegmsgs to see messages that highlight where cloning did occur and conditions that may have inhibited cloning.
Use the CLONEALWAYS and CLONENEVER directives to control cloning of a specific procedure. If the directive is
placed in the definition of the function, cloning is always/never attempted at every call site to name. If the directive
is placed in a function other than the definition, cloning is always/never attempted at every call to name within the
specific function containing the directive.

CLONENEVER and CLONEALWAYS

SUBROUTINE S()
!DIR$ CLONEALWAYS S ! ATTEMPT CLONING OF S AT ALL CALLS.
...
END SUBROUTINE

SUBROUTINE T
!DIR$ CLONENEVER S ! DO NOT CLONE ANY CALLS TO S IN SUBROUTINE T.
CALL S()
...
END SUBROUTINE

SUBROUTINE V
!DIR$ NOCLONE ! HIGHER PRECEDENCE THAN CLONEALWAYS.
CALL S() ! DO NOT CLONE THIS CALL TO S.
!DIR$ CLONE
CALL S() ! ATTEMPT CLONING OF THIS CALL TO S.
...
END SUBROUTINE

[NO]MODINLINE
!DIR$ MODINLINE
!DIR$ NOMODINLINE

Cray Fortran Directive Use

 62

The MODINLINE and NOMODINLINE directives enable and disable the creation of inlinable templates for specific
module procedures.

The MODINLINE and NOMODINLINE directives are ignored if -O nomodinline is specified on the ftn
command line.

These directives are in effect for the scope of the program unit in which they are specified, including all contained
procedures. If one of these directives is specified in a contained procedure, the contained procedure's directive
overrides the containing procedure's directive.

The compiler generates a message if these directives are specified outside of a module and ignores the directive.

 MODULE BEGIN
 ...
 CONTAINS
 SUBROUTINE S() ! Uses SUBROUTINE S's !DIR$
!DIR$ NOMODINLINE
 ...
 CONTAINS
 SUBROUTINE INSIDE_S() ! Uses SUBROUTINE S's !DIR$
 ...
 END SUBROUTINE INSIDE_S
 END SUBROUTINE S
 SUBROUTINE T() ! Uses MODULE BEGIN's !DIR$
 ...
 CONTAINS
 SUBROUTINE INSIDE_T() ! Uses MODULE BEGIN's !DIR$
 ...
 END SUBROUTINE INSIDE_T
 SUBROUTINE MORE_INSIDE_T
!DIR$ NOMODINLINE
 ...
 END SUBROUTINE MORE_INSIDE_T
 END SUBROUTINE T
 END MODULE BEGIN
In the preceding example, the subroutines are affected as follows:

● Inlining templates are not produced for S, INSIDE_S, or MORE_INSIDE_T.

● Inlining templates are produced for T and INSIDE_T.

6.2 Local Control Directives
The following directives provide local control over specific compiler features. The -f and -R command line
options apply to an entire compilation, but these directives override any command line specifications for source
form or bounds checking.

[NO]BOUNDS
!DIR$ BOUNDS [array [, array] ...]
!DIR$ NOBOUNDS [array [, array] ...]

Cray Fortran Directive Use

 63

array The name of an array. The name cannot be a subobject of a derived type. When no array name is
specified, the directive applies to all arrays.

Array bounds checking provides a check of most array references at both compile time and run time to ensure
that each subscript is within the array's declared size. Bounds checking behavior differs with the optimization
level. Bounds checking is not performed on arrays dimensioned as 1. Enables -Ooverindex. Complete
checking is guaranteed only when optimization is turned off by specifying -O 0 on the ftn command line.

The -R command line option controls bounds checking for a whole compilation. The BOUNDS and NOBOUNDS
directives toggle the feature on and off within a program unit. Either directive can specify particular arrays or can
apply to all arrays.

Equivalent to the -Rb option and added to improve C/Fortran command line compatibility.

BOUNDS remains in effect for a given array until the appearance of a NOBOUNDS directive that applies to that array,
or until the end of the program unit. Bounds checking can be enabled and disabled many times in a single
program unit.

To be effective, these directives must follow the declarations for all affected arrays. It is suggested that they be
placed at the end of a program unit's specification statements unless they are meant to control particular ranges
of code.

The bounds checking feature detects any reference to an array element whose subscript exceeds
the array's declared size.

 REAL A(10)
C DETECTED AT COMPILE TIME:
 A(11) = X
C DETECTED AT RUN TIME IF IFUN(M) EXCEEDS 10:
 A(IFUN(M)) = W

The compiler generates an error message if it detects that an array element section reference with an out-of-
bounds subscript attempts to reference memory. If the compiler cannot detect the out-of-bounds subscript (for
example, if the subscript includes a function reference), a message is issued for out-of-bound subscripts when the
program runs, but the program is allowed to complete execution.

Bounds checking does not inhibit vectorization but typically increases program run time. If an array's last
dimension declarator is *, checking is not performed on the last dimension's upper bound. Arrays in formatted
WRITE and READ statements are not checked.

Array bounds checking does not prevent operand range errors that result when operand prefetching attempts to
access an invalid address outside an array. Bounds checking is needed when very large values are used to
calculate addresses for memory references.

If bounds checking detects an out-of-bounds array reference, a message is issued for only the
first out-of-bounds array reference in the loop.

DIMENSION A(10)
 MAX = 20
 A(MAX) = 2
 DO 10 I = 1, MAX
 A(I) = I
10 CONTINUE

Cray Fortran Directive Use

 64

 CALL TWO(MAX,A)
 END
 SUBROUTINE TWO(MAX,A)
 REAL A(*) ! NO UPPER BOUNDS CHECKING DONE
 END
The following messages are issued for the preceding program:

lib-1961 a.out: WARNING
 Subscript 20 is out of range for dimension 1 for array
 'A' at line 3 in file 't.f' with bounds 1:10.

lib-1962 a.out: WARNING
 Subscript 1:20:1 is out of range for dimension 1 for array
 'A' at line 5 in file 't.f' with bounds 1:10.

FREE and FIXED
!DIR$ FREE
!DIR$ FIXED
The FREE and FIXED directives specify whether the source code in the program unit is written in free source form
or fixed source form. The FREE and FIXED directives override the -f option, if specified, on the command line.

These directives apply to the source file in which they appear, and they allow for switching source forms within a
source file.

Source form can be changed from within an INCLUDE file. After the INCLUDE file has been processed, the
source form reverts back to the source form that was being used prior to processing of the INCLUDE file.

OPTIMIZE
!DIR$ OPTIMIZE (option option)
The OPTIMIZE directive enables/disables optimization in the program unit in which it appears, overriding the
optimization level set via the compiler command line. This directive may only appear in the declarative section of
a program unit. A program unit may be a program, subroutine, function, module, or submodule, but not block data
program unit.

OPTIMIZE does not affect any modules invoked with the USE statement in the program unit that contains them.
They do affect CONTAINed procedures that do not include an explicit OPTIMIZE directive.

The OPTIMIZE directive with no option specified is equivalent to OPTIMIZE -O2.

The OPTIMIZE directive accepts the following subset of the command line options which control optimization.
Refer to crayftn(1) for a description of these options.

The OPTIMIZE directive accepts the following subset of the command line options which control optimization.
Refer to crayftn(1) for a description of these options.

● -O level
● -h acc
● -h acc_model=
● -h add_paren
● -h [no]aggress

Cray Fortran Directive Use

 65

● -h align_arrays
● -h [no]autothread
● -h [no]autoprefetch
● -h cache n

● -h concurrent
● -h contiguous
● -h contiguous_assumed_shape
● -h flex_mp=level
● -h fp n

● -h fp_trap
● -h fusion n

● -h infinitevl
● -h loop_trips
● -h msgs
● -h negmsgs
● -h nointerchange
● -h omp
● -h overindex
● -h page_align_allocate
● -h [no]pattern
● -h scalar n

● -h shortcircuit level

● -h thread n

● -h unroll n

● -h vector n

● -h zero
See the OPTIMIZE(7) man page.

6.3 Miscellaneous Directives
[NO]AUTOTHREAD
!DIR$ AUTOTHREAD
!DIR$ NOAUTOTHREAD
The [no]autothread directive turns autothreading on or off for selected blocks of code.

These directives are ignored if the -h thread0 or -O thread0 options are used.

Cray Fortran Directive Use

 66

CACHE
!DIR$ CACHE base_name[, base_name]
base_name The base name of the object that should be placed into the cache. If a pointer in the list is

specified, only the references and not the pointer itself are cached.

The cache directive asserts that all memory operations with the specified symbols as the base are to be
allocated in cache. This is an advisory directive. The cache directive is meaningful for stores in that it allows the
user to override a decision made by the automatic cache management. This directive may be locally overridden
by the use of a LOOP_INFO directive. This directive overrides automatic cache management decisions. To use the
directive, place it only in the specification part, before any executable statement.

CACHE_NT
!DIR$ CACHE_NT base_name [,base_name ...]
base_name The base name of the object that should use non-temporal reads and writes. This can be the base

name of any object such as an array, scalar structure, and so on, without member references. If a
pointer in the list is specified, only the references, not the pointer itself, have the cache non-
temporal property.

Use this directive to identify objects that should not be placed in cache. This is an advisory directive that specifies
objects that should use non-temporal reads and writes.

This directive overrides the automatic cache management level that was specified using the -O cachen option
on the compiler command line. This directive may be overridden locally by use of a LOOP_INFO directive.

[NO]FUSION
!DIR$ FUSION
!DIR$ NOFUSION
Scope: Local

The nofusion directive instructs the compiler to not attempt loop fusion on the following loop even when the -h
fusion option was specified on the compiler command line. The fusion directive instructs the compiler to attempt
loop fusion on the following loop unless -h nofusion was specified on the compiler command line.

ID
!DIR$ ID "character_string"
The ID directive inserts a character string into the file.o produced for a Fortran source file.

character_string

The character string to be inserted into file.o. The syntax box shows quotation marks as the
character_string delimiter, but either apostrophes (' ') or quotation marks (" ") can be used.

The character_string can be obtained from file.o in one of the following ways:

● Method 1 - Using the what command. To use the what command to retrieve the character string, begin the
character string with the characters @(#). For example, assume that id.f contains the following source
code:

!DIR$ ID '@(#)file.f 03 February 1999'
 PRINT *, 'Hello, world'
 END

Cray Fortran Directive Use

 67

● The next step is to use file id.o as the argument to the what command, as follows:

% what id.o
% id.o:
% file.f 03 February 1999

● Note that what does not include the special sentinel characters in the output.

● In the following example, character_string does not begin with the characters @(#). The output shows
that what does not recognize the string.

● Input file id2.o contains the following:

!DIR$ ID 'file.f 03 February 1999'
 PRINT *, 'Hello, world'
 END

● The what command generates the following output:

% what id2.o
% id2.o:

● Method 2 - Using strings or od. The following example shows how to obtain output using the strings
command.

● Input file id.f contains the following:

!DIR$ ID "File id.f Date: 03 February 1999"
 PRINT *, 'Hello, world'
 END

● The strings command generates the following output:

% strings id.o
02/03/9913:55:52f90
3.3cn
$MAIN
@CODE
@DATA
@WHAT
$MAIN
$STKOFEN
f$init
_FWF
$END
*?$F(6(
Hello, world
$MAIN
File: id.f Date: 03 February 1999
% od -tc id.o
... portion of dump deleted
0000000001600 \0 \0 \0 \0 \0 \0 \0 \n F i l e : i d
0000000001620 . f D a t e : 0 3 F e b
0000000001640 r u a r y 1 9 9 9 \0 \0 \0 \0 \0 \0
... portion of dump deleted

IGNORE_TKR
!DIR$ IGNORE_TKR (letter) dummy_arg ...

Cray Fortran Directive Use

 68

letter The letter can be T, K, or R, or any combination of these letters (for example, TK or KR). The
letter applies only to the dummy argument it precedes. If letter appears, dummy_arg must
appear.

dummy_arg If specified, it indicates the dummy arguments for which TKR rules should be ignored. If not
specified, TKR rules are ignored for all dummy arguments in the procedure that contains the
directive.

The IGNORE_TKR directive directs the compiler to ignore the type, kind, and/or rank (TKR) of specified dummy
arguments in a procedure interface.

The directive causes the compiler to ignore the type, kind, and/or rank of the specified dummy arguments when
resolving a generic call to a specific call. The compiler also ignores the type, kind, and/or rank on the specified
dummy arguments when checking all the specifics in a generic call for ambiguities.

The following directive instructs the compiler to ignore type, kind, and/or rank rules for the dummy
arguments of the following subroutine fragment:

subroutine example(A,B,C,D)
!DIR$ IGNORE_TKR A, (R) B, (TK) C, (K) D
Table 7. Explanation of Ignored TKRs

Dummy Argument Ignored

A Type, kind and rank is ignored

B Only rank is ignored

C Type and kind is ignored

D Only kind is ignored

memory
!dir$ memory (list-of-attributes) [if(if-expr)]
heap-allocation-statement

!dir$ memory (list-of-attributes) [if(if-expr) ::] list-of-vars
variable-declaration

component-declaration
!dir$ memory (list-of-attributes) [if(if-expr) ::] list-of-components
The memory directive is a mechanism that allows developers to place variables and memory allocations in a
specific type of memory. This directive is intended for systems with more than one type of explicitly-addressable
memory, particularly when the entire application footprint will not fit into the desired type of memory (or the
developer would like to place different memory regions in different types of memory). For example, the Intel Xeon
Phi (codenamed Knights Landing or KNL) has both "normal" DDR memory and a limited capacity of "high-
bandwidth" MCDRAM memory. Please refer to the memory(7) man page for full details on using this directive.

NAME
!DIR$ NAME (fortran_name="external_name", fortran_name="external_name" ...)

Cray Fortran Directive Use

 69

fortran_name The name used for the object throughout the Fortran program.

external_name The external form of the name.

The NAME directive allows the specification of a case-sensitive external name, or a name that contains
characters outside of the Fortran character set, in a Fortran program. The case-sensitive external name is
specified on the NAME directive.

Rules for Fortran naming do not apply to the external_name string; any character sequence is valid. Use this
directive, for example, when writing calls to C routines.

 PROGRAM MAIN
!DIR$ NAME (FOO="XyZ")
 CALL FOO ! XyZ is really being called
 END PROGRAM

The Fortran standard BIND feature provides some of the capability of the NAME directive.

NOFISSION
!DIR$ NOFISSION
Scope: Local

Instructs the compiler not to split statements in a given loop into distinct loops. Fission is prevented only for the
loop specified; loops nested within the indicated loop remain fission candidates unless likewise annotated.

PREFETCH
!DIR$ PREFETCH [([lines(num)][, level(num)][, write][, nt])] var[, var] ...
lines(num) Specifies the number of cache lines to be prefetched. num is an expression that evaluates to an

integer constant at compilation time. By default, the number of cache lines prefetched is 1.

level(num) Specifies the level of cache into which data is loaded. num is an expression that evaluates to an
integer constant at compilation time. The cache level defaults to 1, the level closest to the
processing unit. This level specification has little effect for current x86 targets.

write Specifies that the prefetch is for data to be written. When data is to be written, a prefetch instruction
can move a block into the cache so that the expected store will be to the cache. Prefetch for write
generally brings the data into the cache in an exclusive or modified state. By default, the prefetch is
for data to be read. If the target architecture does not support prefetch for write, the prefetch will
automatically become a prefetch for read.

nt Specifies that the prefetch is for non-temporal data. By default, the prefetch is for temporal data.
Data with temporal locality (persistence), is expected to be accessed multiple times.

The general prefetch directive instructs the compiler to generate explicit prefetch instructions which load data from
memory into cache prior to read or write access. The memory location to be prefetched is defined by var, which
specifies any valid variable, member, or array element reference.

The compiler issues the prefetch instruction when it encounters the prefetch directive. The directive allows the
user to influence almost every aspect of prefetch behavior. The default behavior prefetches one cache line, into
L1 cache, for read access, and assumes temporal locality. The prefetch directive can be used inside and outside
of loops, in a loop preamble, or before a function call to reduce cache-miss memory latency. The compiler will
attempt to avoid multiple prefetches to the same cache line, which can be created as a result of optimization. All

Cray Fortran Directive Use

 70

variables specified on the same prefetch directive line share the same behavior. If different behavior is needed for
different variables, use multiple prefetch directive lines. The general prefetch directive supersedes the
effects of any relevant loop_info [no]prefetch directives and the -h [no]autoprefetch command line
option. The Cray Fortran compiler command line option -x prefetch can be used to disable all general
prefetch directives in Fortran source code. The compiler command line option -h nopragma=prefetch can be
used to disable all general prefetch directives in C and C++ source code.

PREFETCH directive

real*8 a(m,n), b(n,p), c(m,p), arow(n)
...
do j = 1, p
!dir$ prefetch (lines(3), nt) arow(1),b(1,j)
 do k = 1, n, 4
!dir$ prefetch (nt) arow(k+24),b(k+24,j)
 c(i,j) = c(i,j) + arow(k) * b(k,j)
 c(i,j) = c(i,j) + arow(k+1) * b(k+1,j)
 c(i,j) = c(i,j) + arow(k+2) * b(k+2,j)
 c(i,j) = c(i,j) + arow(k+3) * b(k+3,j)
 enddo
enddo

PREPROCESS
!DIR$ PREPROCESS expand_macros
The PREPROCESS directive allows an include file to be processed when the compilation does not specify the
preprocessing command line option. This directive does not cause preprocessing of included files, unless they too
use the directive. If the preprocessing command line option is used, preprocessing occurs normally for all files.

To use the directive, it must be the first line in the include file and in each included file that needs to be
preprocessing.

The optional expand_macros clause allows the compiler to expand all macros within the include files. Without
this clause, macro expansion occurs only within preprocessing directives.

SAME_TBS
!DIR$ SAME_TBS (array, array, array)
array Two or more array arguments are required. array is the name of an assumed-shape dummy array.

The arrays specified must not have the TARGET attribute. All arrays, specified on a single SAME_TBS
directive must have same element type, bounds, and strides.

The SAME_TBS directive informs the compiler that the specified assumed size arrays are of the same rank and
type, and that they have identical low-bound, extent, and stride multiplier information for corresponding
dimensions. See the SAME_TBS(7) man page.

This information allows the compiler to generate more efficient code by reducing the number of potentially distinct
intermediate values required for array element accesses. This may offer significant execution performance
improvement when using assumed-shape dummy arrays of corresponding type, low-bound, extent, and stride.

The SAME_TBS directive applies only to the program unit in which it appears.

Ordinarily, for multidimensional assumed-shape arrays, some classes of loop optimizations cannot be performed
when an assumed-shape dummy array is referenced or defined in a loop or an array assignment statement. The

Cray Fortran Directive Use

 71

lost optimizations and the additional copy operations performed can significantly reduce the performance of a
procedure that uses assumed-shape dummy arrays when compared to an equivalent procedure that uses explicit-
shape array dummy arguments. This directive may provide significant performance improvement depending on
certain factors such as greater numbers of assumed-shape arrays and smaller array sizes.

WEAK
!DIR$ WEAK procedure_name [, procedure_name] ...
!DIR$ WEAK procedure_name = stub_name[, procedure_name1 = stub_name1] ...
Sometimes, the code path of a program never executes at run time because of some condition. If this code path
references a procedure that is external to the program (for example, a library procedure), the linker will add the
binary for the procedure to the compiled program, resulting in a larger program.

When statically linking, the weak directive specifies an external identifier that may remain unresolved throughout
the compilation. This directive has no effect when dynamically linking. The WEAK directive can prevent the
compiler driver from adding the binary to the program, resulting in a smaller program and less use of memory.

The WEAK directive is used with procedures and variables to declare weak objects. The use of a weak object is
referred to as a weak reference. The existence of a weak reference does not cause the compiler driver to add the
appropriate binaries into a compiled program, so executing a weak reference will cause the program to fail. The
compiler support for determining if the binary of a weak object is linked is deferred. To cause the compiler driver to
add the binaries so the weak reference will work, a strong reference (a normal reference) must be somewhere in
the program.

The following example illustrates the reason the WEAK directive is used. The startup code, which is compiled into
every Fortran program, calls the SHMEM initialization routine, which causes the linker to add the binary of the
initialization routine to every compiled program if a strong reference to the routine is used. This binary is
unnecessary if a program does not use SHMEM. To avoid linking unnecessary code, the startup code uses the
WEAK directive for the initialization routine. In this manner, if the program does not use SHMEM, the linker does
not add the binary of the initialization routine even though the startup code calls it. However, if the program calls
the SHMEM routines using strong references, the linker adds the necessary binaries, including the initialization
binary into the compiled program.

The first form allows the specification of one or more weak objects. This form requires the implementation of code
that senses that the procedure_name procedure is linked before calling it. The second form allows the pointing
of a weak reference (procedure_name) to a stub procedure that exists in the code. This allows for calling of the
stub if a strong reference to procedure_name does not exist. If a strong reference to procedure_name exists,
it is called instead of the stub. The stub_name procedure must have the same name and dummy argument list
as procedure_name.

The linker does not issue an unresolved reference error message for weak procedure references.

6.4 PGAS Directive
defer_sync
!DIR$ DEFER_SYNC
PGAS (Partitioned Global Address Space) language data references made by the single statement immediately
following the PGAS defer_sync directive are not synchronized until the next fence instruction. Normally the

Cray Fortran Directive Use

 72

compiler synchronizes the references in a statement as late as possible without violating program semantics. The
purpose of the defer_sync directive is to synchronize the references even later, beyond where the compiler can
determine it is safe. Use this directive to force all references in the next statement to be non-blocking. This helps
for cases where the compiler cannot prove that it is safe.

For example, if there is a remote-memory access (RMA) put near the end of a subroutine, the compiler must
guard against the put value being read back immediately after the subroutine returns, so the put is synchronized
just before returning. The programmer, however, may know that the value is not read back and can insert a PGAS
defer_sync directive.

defer_sync directive in Coarray Fortran

subroutine my_put(x, image, value)
 integer :: x[*], image, value
 !dir$ pgas defer_sync
 x[image] = value
 end subroutine

6.5 Scalar Optimization Directives
Scalar optimization directives control aspects of code generation, register storage, and other scalar operations.

[NO]COLLAPSE
!DIR$ COLLAPSE (loop-number1, loop-number2 [,loop-number3] ...)
loop-number

Specify a value greater than or equal to 0 for the primary cache.

!DIR$ NOCOLLAPSE
Scope: Local

When the collapse directive is applied to a loop nest, the loop numbers of the participating loops must be listed
in order of increasing access stride. Loop numbers range from 1 to the nesting level of the most deeply nested
loop. The directive enables the compiler to assume appropriate conformity between trip counts. The compiler
diagnoses misuse at compile time (when able); or, if -h dir_check is specified, at run time.

The nocollapse directive disqualifies the immediately following loop from collapsing with any other loop.
Collapse is almost always desirable, so use this directive sparingly. Loop collapse is a special form of loop
coalesce. Any perfect loop nest may be coalesced into a single loop, with explicit rediscovery of the intermediate
values of original loop control variables. The rediscovery cost, which generally involves integer division, is quite
high. Therefore, coalesce is rarely suitable for vectorization. It may be beneficial for multithreading. By definition,
loop collapse occurs when loop coalesce may be done without the rediscovery overhead. To meet this
requirement, all memory accesses must have uniform stride.

[NO]INTERCHANGE
!DIR$ interchange(loop_number1, loop_number2[, loop_number3] ...)
loop_number

Number from 1 to nesting depth of the most deeply nested loop

Cray Fortran Directive Use

 73

!DIR$ nointerchange
Scope: Local

The interchange control directives specify whether or not the order of the following two or more, perfectly
nested loops should be interchanged. These directives apply to the subsequent loops.

The interchange directive specifies two or more loop numbers, ranging from 1 to the nesting depth of the most
deeply nested loop, specified in any order. The compiler reorders perfectly nested loops. If they are not perfectly
nested, unexpected results may occur.

The nointerchange directive inhibits loop interchange on the loop that immediately follows the directive.

NOSIDEEFFECTS
!DIR$ NOSIDEEFFECTS f , f ...
f Symbolic name of a subprogram that the user is sure has no side effects. f must not be the name of a

dummy procedure, module procedure, or internal procedure.

The NOSIDEEFFECTS directive allows the compiler to keep information in registers across a single call to
subprogram without reloading the information from memory after returning from the subprogram. The directive is
not needed for intrinsic functions.

NOSIDEEFFECTS declares that a called subprogram does not redefine any variables that meet the following
conditions:

● Local to the calling program

● Passed as arguments to the subprogram

● Accessible to the calling subprogram through host association

● Declared in a common block or module

● Accessible through USE association

A procedure declared NOSIDEEFFECTS should not define variables in a common block or module shared by a
program unit in the calling chain. All arguments should have the INTENT(IN) attribute; that is, the procedure
must not modify its arguments. If these conditions are not met, results are unpredictable.

The NOSIDEEFFECTS directive must appear in the specification part of a program unit and must appear before
the first executable statement.

The compiler may move invocations of a NOSIDEEFFECTS subprogram from the body of a DO loop to the loop
preamble if the arguments to that function are invariant in the loop. This may affect the results of the program,
particularly if the NOSIDEEFFECTS subprogram calls functions such as the random number generator or the real-
time clock.

The effects of the NOSIDEEFFECTS directive are similar to those that can be obtained by specifying the PURE
prefix on a function or a subroutine declaration. For more information about the PURE prefix, refer to the Fortran
Standard.

SUPPRESS
!DIR$ SUPPRESS var , var ...
var Variable that is to be stored to memory. If no variables are listed, all variables in the program unit are

stored. If more than one variable is specified, use a comma to separate vars.

Cray Fortran Directive Use

 74

The SUPPRESS directive suppresses scalar optimization for all variables or only for those specified at the point
where the directive appears. This often prevents or adversely affects vectorization of any loop that contains
SUPPRESS.

At the point at which !DIR$ SUPPRESS appears in the source code, variables in registers are stored to memory
(to be read out at their next reference), and expressions containing any of the affected variables are recomputed
at their next reference after !DIR$ SUPPRESS. The effect on optimization is equivalent to that of an external
subroutine call with an argument list that includes the variables specified by !DIR$ SUPPRESS (or, if no variable
list is included, all variables in the program unit).

SUPPRESS takes effect only if it is on an execution path. Optimization proceeds normally if the directive path is not
executed because of a GOTO or IF.

 SUBROUTINE SUB (L)
 LOGICAL L
 A = 1.0 ! A is local
 IF (L) THEN
!DIR$ SUPPRESS ! Has no effect if L is false
 CALL ROUTINE()
 ELSE
 PRINT *, A
 END IF
 END

In this example, optimization replaces the reference to A in the PRINT statement with the
constant 1.0, even though !DIR$ SUPPRESS appears between A=1.0 and the PRINT statement.
The IF statement can cause the execution path to bypass !DIR$ SUPPRESS. If SUPPRESS
appears before the IF statement, A in PRINT* is not replaced by the constant 1.0.

6.6 Storage Directives
The directives described in this topic specify aspects of storing common blocks, variables, or arrays.

BLOCKABLE
!DIR$ BLOCKABLE (do_variable, do_variable [,do_variable] ...)

do_variable Loop control variable

The BLOCKABLE directive specifies that it is legal and desirable to cache block the subsequent loop nest, even
when the compiler has not made such a determination. To be legally blockable, the nest must be perfect (without
code between constituent loops), rectangular (trip counts of member loops are fixed over the life time of nest),
and fully permutable (loop interchange and unrolling is legal at all levels). This directive both permits and requests
blocking of the indicated loop nest.

If a BLOCKINGSIZE directive is also provided for the indicated loop, the following rules apply:

● If BLOCKINGSIZE is at least two, the indicated blockingsize is used.

Cray Fortran Directive Use

 75

● If BLOCKINGSIZE is zero, the loop itself is not blocked and it is treated as an inner loop (as part of the nest
that traverses the cache block tile).

● If BLOCKINGSIZE is one, the loop itself is not blocked and it is treated as an outer loop (as a loop in the nest
that moves from tile to tile).

When no blockingsize directive is supplied the compiler chooses the blockingsize according to its own heuristics.

BLOCKINGSIZE
!DIR$ BLOCKINGSIZE (n1 [,n2])
!DIR$ noblocking
n1

Specify a value greater than or equal to 0 for the primary cache.

n2
Specify a value less than or equal to 2**30 for the secondary cache.

If n1 or n2 are 0, the loop is not blocked, but the entire loop is inside the block.

The BLOCKINGSIZE directive asserts that the loop following the directive is involved in a cache blocking situation
for the primary or secondary cache.

The NOBLOCKING directive prevents the compiler from involving the subsequent loop in a cache blocking
situation.

If the loop is involved in a blocking situation, it will have a block size of n1 for the primary cache and n2 for the
secondary cache. The compiler attempts to include this loop within such a block but cannot guarantee inclusion.

BLOCKINGSIZE Directive

The compiler makes 20 x 20 blocks when blocking, but it could block the loop nest such that loop
K is not included in the file.

 SUBROUTINE AMAT(X,Y,Z,N,M,MM)
 REAL(KIND=8) X(100,100), Y(100,100), Z(100,100)
 DO K = 1, N
!DIR$ BLOCKABLE(J,I)
!DIR$ BLOCKING SIZE (20)
 DO J = 1, M
!DIR$ BLOCKING SIZE (20)
 DO I = 1, MM
 Z(I,K) = Z(I,K) + X(I,J)*Y(J,K)
 END DO
 END DO
 END DO
 END

If K is excluded, add a BLOCKINGSIZE(0) directive just before loop K to specify that the
compiler should generate a loop such as the following example:

 SUBROUTINE AMAT(X,Y,Z,N,M,MM)
 REAL(KIND=8) X(100,100), Y(100,100), Z(100,100)
 DO JJ = 1, M, 20
 DO II = 1, MM, 20
 DO K = 1, N
 DO J = JJ, MIN(M, JJ+19)

Cray Fortran Directive Use

 76

 DO I = II, MIN(MM, II+19)
 Z(I,K) = Z(I,K) + X(I,J)*Y(J,K)
 END DO
 END DO
 END DO
 END DO
 END DO
 END

NOBLOCKING
!DIR$ NOBLOCKING
Asserts that the loop following the directive should not be cache blocked for the primary or secondary cache. It is
an error to place a noblocking directive before a loop that is part of a blockable collection.

STACK
!DIR$ STACK
The STACK directive causes storage to be allocated to the stack in the program unit that contains the directive.
This directive overrides the -ev command line option in specific program units of a compilation unit. For more
information about the -ev command line option, see Miscellaneous Fortran Specific Options.

Data specified in the specification part of a module or in a DATA statement is always allocated to static storage.
This directive has no effect on this static storage allocation.

All SAVE statements are honored in program units that also contain a STACK directive. This directive does not
override the SAVE statement.

If the compiler finds a STACK directive and a SAVE statement without any objects specified in the same program
unit, a warning message is issued.

The following rules apply when using this directive:

● It must be specified within the scope of a program unit.

● If it is specified in the specification part of a module, a message is issued. The STACK directive is allowed in
the scope of a module procedure.

6.7 Vectorization Directives
Because vector operations cannot be expressed directly in the compiler, the compiler must be capable of
transforming scalar operations into equivalent vector operations. The candidates for vectorization are operations
in loops and assignments of structures. Compiler directives may be used to control vectorization.

COPY_ASSUMED_SHAPE
!DIR$ COPY_ASSUMED_SHAPE array , array ...
array The name of an array to be copied to temporary storage. If no array names are specified, all assumed-

shape dummy arrays are copied to temporary contiguous storage upon entry to the procedure. When
the procedure is exited, the arrays in temporary storage are copied back to the dummy argument arrays.

Cray Fortran Directive Use

 77

If one or more arrays are specified, only those arrays specified are copied. The arrays specified must
not have the TARGET attribute.
All arrays specified, or all assumed-shape dummy arrays (if specified without array arguments), on a
single COPY_ASSUMED_SHAPE directive must be shape conformant with each other. Incorrect code may
be generated if the arrays are not. The -R c command line option can be used to verify whether the
arrays are shape conformant.

The COPY_ASSUMED_SHAPE directive copies assumed-shape dummy array arguments into contiguous local
temporary storage upon entry to the procedure in which the directive appears. During execution, it is the
temporary storage that is used when the assumed-shape dummy array argument is referenced or defined.

The COPY_ASSUMED_SHAPE directive applies only to the program unit in which it appears.

Assumed-shape dummy arguments cannot be assumed to be stored in contiguous storage. In the case of
multidimensional arrays, the elements cannot be assumed to be stored with uniform stride between each element
of the array. These conditions can arise, for example, when an actual array argument associated with an
assumed-shape dummy array is a non-unit strided array slice or section.

If the compiler cannot determine whether an assumed-shape dummy array is stored contiguously or with a
uniform stride between each element, some optimizations are inhibited in order to ensure that correct code is
generated. If an assumed-shape dummy array is passed to a procedure and becomes associated with an explicit-
shape dummy array argument, additional copy-in and copy-out operations may occur at the call site. For
multidimensional assumed-shape arrays, some classes of loop optimizations cannot be performed when an
assumed-shape dummy array is referenced or defined in a loop or an array assignment statement. The lost
optimizations and the additional copy operations performed can significantly reduce the performance of a
procedure that uses assumed-shape dummy arrays when compared to an equivalent procedure that uses explicit-
shape array dummy arguments.

The COPY_ASSUMED_SHAPE directive causes a single copy to occur upon entry and again on exit. The compiler
generates a test at run time to determine wheteher the array is contiguous. If the array is contiguous, the array is
not copied. This directive allows the compiler to perform all the optimizations it would otherwise perform if explicit-
shape dummy arrays were used. If there is sufficient work in the procedure using assumed-shape dummy arrays,
the performance improvements gained by the compiler outweigh the cost of the copy operations upon entry and
exit of the procedure.

CONCURRENT
!DIR$ CONCURRENT [SAFE_DISTANCE=n]
n An integer number that represents the number of additional consecutive loop iterations that can be executed

in parallel without danger of data conflict. n must be an integer constant > 0. If SAFE_DISTANCE=n is not
specified, the distance is assumed to be infinite, and the compiler ignores all cross-iteration data
dependencies. The CONCURRENT directive is ignored if the SAFE_DISTANCE argument is used and
vectorization is requested on the command line.

The CONCURRENT directive indicates that no data dependence exists between array references in different
iterations of the loop. This directive affects the loop that immediately follows it. This can be useful for vectorization
optimizations.

Consider the following code:

!DIR$ CONCURRENT SAFE_DISTANCE=3
 DO I = K+1, N

Cray Fortran Directive Use

 78

 X(I) = A(I) + X(I-K)
 ENDDO

The CONCURRENT directive in this example informs the optimizer that the relationship K>3 is true.
This allows the compiler to load all of the following array references safely during the Ith loop
iteration:

X(I-K)
X(I-K+1)
X(I-K+2)
X(I-K+3)

HAND_TUNED
!DIR$ HAND_TUNED
Assert that the code in the next loop nest has been arranged by hand for maximum performance, and the
compiler should restrict some of the more aggressive automatic expression rewrites. The compiler should still fully
optimize and vectorize the loop within the constraints of the directive. The hand_tuned directive applies to the
next loop in the same manner as the CONCURRENT and SAFE_ADDRESS directives.

Use of this directive may severely impede performance. Use carefully and evaluate performance before and after
employing this directive.

IVDEP
!DIR$ IVDEP [SAFEVIL=vlen | INFINITEVL]
vlen Specifieds a vector length in which no dependency will occur. vlen must be an integer between

1 and 1024 inclusive.

INFINITEVL Specifies an infinite safe vector length. That is, no dependency will occur at any vector length.

When the IVDEP directive appears before a loop, the compiler ignores vector dependencies, including explicit
dependencies, in any attempt to vectorize the loop. ivdep applies only to the first for loop or while loop that follows
the directive within the same program unit.

For array operations, Fortran requires that the complete right-hand side (RHS) expression be evaluated before
the assignment to the array or array section on the left-hand side (LHS). If possible dependencies exist between
the RHS expression and the LHS assignment target, the compiler creates temporary storage to hold the RHS
expression result. If an IVDEP directive appears before an array syntax statement, the compiler ignores potential
dependencies and suppresses the creation and use of array temporaries for that statement. Using array syntax
statements allows the reference of referencing arrays in a compact manner. Array syntax allows the use of either
the array name, or the array name with a section subscript, to specify actions on all the elements of an array, or
array section, without using DO loops.

If no vector length is specified, the vector length used is infinity.

If a loop with an IVDEP directive is enclosed within another loop with an IVDEP directive, the IVDEP directive on
the outer loop is ignored. When the Cray compiler vectorizes a loop, it may reorder the statements in the source
code to remove vector dependencies. When IVDEP is specified, the statements in the loop or array syntax
statement are assumed to contain no dependencies as written, and the Cray compiler does not reorder loop
statements.

Cray Fortran Directive Use

 79

LOOP_INFO
!DIR$ LOOP_INFO min_trips(c) est_trips(c) max_trips(c) cache(symbol , symbol ...)
cache_nt(symbol , symbol ...) prefetch noprefetch
c

An expression that evaluates to an integer constant at compilation time.

min_trips
Specifies guaranteed minimum number of trips.

est_trips
Specifies estimated or average number of trips.

max_trips
Specifies guaranteed maximum number of trips.

cache
Specifies that symbol is to be allocated in cache; this is the default if no hint is specified
and the cache_nt directive is not specified.

cache_nt
Specifies that symbol is to use non-temporal reads and writes.

symbol
The base name of the object that should (cache) or should not (cache_nt) be placed into
cache. This can be the base name of any object such as an array or scalar structure without
member references. If specifying a pointer in the list, only the references, not the pointer
itself, are subject to the cache or cache_nt instruction.

prefetch
Specifies a preference that prefetches be performed for the following loop.

noprefetch
Specifies a preference that no prefetches be performed for the following loop.

The LOOP_INFO directive allows additional information to be specified about the behavior of a loop, including run
time trip count, hints on cache allocation strategy, and threading preference. The LOOP_INFO directive provides
information to the optimizer and can produce faster code sequences.

Use LOOP_INFO immediately before a for loop to indicate minimum, maximum, estimated trip count. The compiler
will diagnose misuse at compile time when able, or when option -h dir_check is specified at run time.

For cache allocation hints, use the LOOP_INFO directive to override default settings, cache or cache_nt
directives, or override automatic cache management decisions. The cache hints are local and apply only to the
specified loop nest.

Use the LOOP_INFO PREFER_THREAD directive to indicate the preference that the loop following the directive be
threaded. The LOOP_INFO PREFER_NOTHREAD indicates the preference that the loop following the directive
should not be threaded.

The prefetch clause instructs the compiler to preload scalar data into the first-level cache to improve the
frequency of cache hits and to lower latency. They are generated in situations where the compiler expects them to
improve performance. Strategic use of prefetch instructions can hide latency for scalar loads that feed vector
instructions or scalar loads in purely scalar loops. Prefetch instructions are generated at default and higher

Cray Fortran Directive Use

 80

levels of optimization. Thus, they are turned off at -O0 or -O1. Prefetch can be turned off at the loop level via
the following directive:

!DIR$ LOOP_INFO NOPREFETCH
 DO I = 1, N

LOOP_INFO PREFER_[NO]THREAD
!DIR$ LOOP_INFO PREFER_THREAD
 DO I = 1, N

!DIR$ LOOP_INFO PREFER_THREAD
 DO J = 1, N

The PREFER_THREAD and PREFER_NOTHREAD directives are special cases of the LOOP_INFO advisory directive.
Use these directives to indicate a preference for turning threading on or off for the subsequent loop. Use the
LOOP_INFO PREFER_THREAD directive to indicate the preference that the loop following the directive be
threaded. Use the LOOP_INFO PREFER_NOTHREAD directive to indicate that the loop should not be threaded.

NEXTSCALAR
!DIR$ NEXTSCALAR

The NEXTSCALAR directive disables vectorization for the first DO loop or DO WHILE loop that follows the directive.
The directive applies to only one loop, the first loop that appears after the directive within the same program unit.
NEXTSCALAR is ignored if vectorization has been disabled.

If the NEXTSCALAR directive appears prior to any array syntax statement, it disables vectorization for the array
syntax statement.

[NO]PATTERN
!DIR$ PATTERN
!DIR$ NOPATTERN
The nopattern directive disables pattern matching for the loop immediately following the directive. By default,
the compiler detects coding patterns in source code sequences and replaces these sequences with calls to
optimized library functions. In most cases, this replacement improves performance. There are cases, however, in
which this substitution degrades performance. This can occur, for example, in loops with very low trip counts. In
such a case, use the nopattern directive to disable pattern matching and cause the compiler to generate inline
code.

The nopattern directive disables pattern matching for the loop immediately following the directive.

By default, the compiler would detect that the following loop is a matrix multiply and replace it with
a call to a matrix multiply library routine. By preceding the loop with a !DIR$ NOPATTERN
directive, however, pattern matching is inhibited and no replacement is done.

!DIR$ NOPATTERN
 DO k= 1,n
 DO i= 1,n
 DO j= 1,m
 A(i,j) = A(i,j) + B(i,k) * C(k,j)

Cray Fortran Directive Use

 81

 END DO
 END DO
 END DO

[NO]VECTOR
!DIR$ VECTOR [clause[, clause]...]
!DIR$ NOVECTOR
!dec$ vector [clause[, clause]...]
ALWAYS Vectorize the loop that immediately follows the directive. This directive states a vectorization

preference and does not guarantee that the loop has no memory-dependence hazard. This
directive has the same effect as the prefervector directive.

ALIGNED Directs the compiler to generate aligned data movement instructions for array references when
vectorizing. For current Intel processors, data alignment is necessary for efficient vectorization.
Use with care to improve performance. If some of the access patterns are actually unaligned, using
the ALIGNED clause may generate incorrect code. This directive also directs the compiler to
ignore explicit and implicit vector dependencies.

UNALIGNED Directs the compiler to generate unaligned data movement instructions for all array references
when vectorizing.

The novector directive suppresses compiler attempts to vectorize loops and array syntax statements. It
overrides any other vectorization-related directives, as well as the -h vector and -O vectorn command line
options. These directives are ignored if vectorization or scalar optimization has been disabled.

In Fortran, NOVECTOR applies to the rest of the program unit unless it is superseded by a VECTOR directive. When
NOVECTOR has been used within the same program unit, VECTOR causes the compiler to resume its attempts to
vectorize loops and array syntax statements. After a VECTOR directive is specified, automatic vectorization is
enabled for all loop nests.

PERMUTATION
!DIR$ PERMUTATION (symbol [, symbol] ...)

ia Integer array that has no repeated values for the entire routine.

Specifies that an integer array has no repeated values. This directive is useful when the integer array is used as a
subscript for another array (vector-valued subscript). This directive may improve code performance.

In a sequence of array accesses that read array element values from the specified symbols with no intervening
accesses that modify the array element values, each of the accessed elements will have a distinct value.

When an array with a vector-valued subscript appears on the left side of the equal sign in a loop, many-to-one
assignment is possible. Many-to-one assignment occurs if any repeated elements exist in the subscripting array. If
it is known that the integer array is used merely to permute the elements of the subscripted array, it can often be
determined that many-to-one assignment does not exist with that array reference.

permutation Directive

Sometimes a vector-valued subscript is used as a means of indirect addressing because the
elements of interest in an array are sparsely distributed; in this case, an integer array is used to
select only the desired elements, and no repeated elements exist in the integer array. The
permutation directive does not apply to the array a. Rather, it applies to the pointer used to index

Cray Fortran Directive Use

 82

into it, ipnt. By knowing that ipnt is a permutation, the compiler can safely generate an
unordered scatter for the write to a.

!DIR$ PERMUTATION(IPNT) ! IPNT has no repeated values
 ...
 DO I = 1, N
 A(IPNT(I)) = B(I) + C(I)
 END DO

[NO]PIPELINE
!DIR$ PIPELINE
!DIR$ NOPIPELINE
Software-based vector pipelining (software vector pipelining) provides additional optimization beyond the normal
hardware-based vector pipelining. In software vector pipelining, the compiler analyzes all vector loops and
automatically attempts to pipeline a loop if doing so can be expected to produce a significant performance gain.
This optimization also performs any necessary loop unrolling.

In some cases the compiler either does not pipeline a loop that could be pipelined or pipelines a loop without
producing performance gains. In these situations, use the PIPELINE or NOPIPELINE directive to advise the
compiler to pipeline or not pipeline the loop immediately following the directive.

Software vector pipelining is valid only for the innermost loop of a loop nest. These directives are advisory only.
While the NOPIPELINE directive can be used to inhibit automatic pipelining, and the PIPELINE directive can be
used to attempt to override the compiler's decision not to pipeline a loop, the compiler cannot be forced to pipeline
a loop that cannot be pipelined.

Vector loops that have been pipelined generate compile-time messages to that effect, if optimization messaging is
enabled (-O msgs).

PREFERVECTOR
!DIR$ PREFERVECTOR
Directs the compiler to vectorize the loop immediately following the directive if the loop contains more than one
loop in the nest that can be vectorized. The directive states a vectorization preference and does not guarantee
that the loop has no memory-dependence hazard.

In the following example, both loops can be vectorized, but the compiler generates vector code
for the outer DO I loop:

!DIR$ PREFERVECTOR
 DO I = 1, N
 DO J = 1, M
 A(I) = A(I) + B(J,I)
 END DO
 END DO

PROBABILITY
!DIR$ probability const
!DIR$ probability_almost_always
!DIR$ probability_almost_never

Cray Fortran Directive Use

 83

const Expression that evaluates to a floating point constant at compilation time. (0.0 <= const <= 1.0.)

The probability directives specify information used by interprocedure analysis (IPA) and the optimizer to produce
faster code sequences. The specified probability is a hint, rather than a statement of fact. This information is used
to guide inlining decisions, branch elimination optimizations, branch hint marking, and the choice of the optimal
algorithmic approach to the vectorization of conditional code. These directives can appear anywhere executable
code is legal. Each directive applies to the block of code where it appears. It is important to realize that the
directive should not be applied to a conditional test directly; rather, it should be used to indicate the relative
probability of a THEN or ELSE branch being executed.

Specify almost_never and almost_always by using the probability const values 0.0 and 1.0,
respectively.

PROBABILITY directive

This example states that the probability of entering the block of code with the assignment
statement is 0.3 or 30%. This also means that a[i] is expected to be greater than b[i] 30% of
the time. Note that the probability directive appears within the conditional block of code, rather
than before it. This removes some of the ambiguity that has plagued other implementations that
tie the directive directly to the conditional code.

 IF (A(I) > B(I)) THEN
!DIR$ PROBABILITY 0.3
 A(I) = B(I)
 ENDIF

For vector IF code, a probability of very low (<0.1) or probability_almost_never will cause
the compiler to use the vector gather/scatter methods used for sparse IF vector code instead of
the vector merge methods used for denser IF code. For example:

 DO I = 1,N
 IF (A(I) > 0.0) THEN
!DIR$ PROBABILITY_ALMOST_NEVER
 B(I) = B(I)/A(I) + A(I)/B(I) ! EVALUATE USING SPARSE
METHODS
 ENDIF
 ENDDO

Note that the PROBABILITY directive appears within the conditional, rather than before the
condition. This removes some of the ambiguity of tying the directive directly to the conditional
test.

SAFE_ADDRESS
Specifies that it is safe to speculatively execute memory references within all conditional branches of a loop;
these memory references can be safely executed in each iteration of the loop. For most code, this directive can
improve performance significantly by preloading vector expressions. However, most loops do not require this
directive to have preloading performed. SAFE_ADDRESS is required only when the safety of the operation cannot
be determined or index expressions are very complicated.

Cray Fortran Directive Use

 84

The SAFE_ADDRESS directive is an advisory directive. That is, the compiler may override the directive if it
determines the directive is not beneficial. If the directive is not used on a loop and the compiler determines that it
would benefit from the directive, it issues a message indicating such. The message is similar to this:

 DO I = 1,N
FTN-6375 FTN_DRIVER.EXE: VECTOR X7, FILE = 10928.F, LINE = 110
 A LOOP STARTING AT LINE 110 WOULD BENEFIT FROM "!DIR$ SAFE_ADDRESS".

If using the directive on a loop and the compiler determines that it does not benefit from the directive, it issues a
message that states the directive is superfluous and can be removed.

To see the messages, use the -O msgs option.

Incorrect use of the directive can result in segmentation faults, bus errors, or excessive page faulting. However, it
should not result in incorrect answers. Incorrect usage can result in very severe performance degradations or
program aborts.

SAFE_ADDRESS directive

In this example, the compiler will not preload vector expressions, because the value of j is
unknown. However, if it is known that references to b (i,j) are safe to evaluate for all iterations
of the loop, regardless of the condition, the SAFE_ADDRESS directive can be used. With the
directive, the compiler can load b (i,j) with a full vector mask, merge 0.0 where the condition
is true, and store the resulting vector using a full mask.

SUBROUTINE X3(A, B, N, M, J)
REAL A(N), B(N,M)

!DIR$ SAFE_ADDRESS
DO I = 1,64 ! VECTORIZED LOOP
 IF (A(I).NE.0.0) THEN
 B(I,J) = 0.0 ! VALUE OF 'J' IS UNKNOWN
 ENDIF
ENDDO
END

SAFE_CONDITIONAL
!DIR$ SAFE_CONDITIONAL
Specifies that it is safe to execute all memory references and arithmetic operations within all conditional branches
of the subsequent scalar or vector loop nest. It can improve performance by allowing the hoisting of invariant
expressions from conditional code and by allowing prefetching of memory references.

The SAFE_CONDITIONAL directive is an advisory directive. The compiler may override the directive if it
determines the directive is not beneficial.

Incorrect use of the directive can result in segmentation faults, bus errors, or excessive page faulting. However, it
should not result in incorrect answers. Incorrect usage can result in very severe performance degradations or
program aborts.

SAFE_CONDITIONAL directive

In the example below, the compiler cannot precompute the invariant expression s1*s2 because
these values are unknown and may cause an arithmetic trap if executed unconditionally.

Cray Fortran Directive Use

 85

However, if the condition is known to be true at least once, then it is safe to use the
SAFE_CONDITIONAL directive and execute s1*s2 speculatively. With the directive, the compiler
evaluates s1*s2 outside of the loop, rather than under control of the conditional code. In addition,
all control flow is removed from the body of the vector loop as s1*s2 no longer poses a safety
risk.

 SUBROUTINE SAFE_COND(A, N, S1, S2)
 REAL A(N), S1, S2

!DIR$ SAFE_CONDITIONAL
 DO I = 1,N
 IF (A(I) /= 0.0) THEN
 A(I) = A(I) + S1*S2
 ENDIF
 ENDDO
 END

SAME_TBS
!DIR$ SAME_TBS array, array, array)
array Two or more array arguments are required. array is the name of an assumed-shape dummy array.

The arrays specified must not have the TARGET attribute. All arrays, specified on a single SAME_TBS
directive must have the same element type, bounds, and strides. Use the -Rd command line option to
verify that the arrays have the same element type, bounds, and strides.

The SAME_TBS directive informs the compiler that the specified assumed size arrays are of the same rank and
type, and that they have identical low-bound, extent, and stride multiplier information for corresponding
dimensions. See the SAME_TBS(7) man page.

This information allows the compiler to generate more efficient code by reducing the number of potentially distinct
intermediate values required for array element accesses. This may offer significant execution performance
improvement when using assumed-shape dummy arrays of corresponding type, low-bound, extent, and stride.

The SAME_TBS directive applies only to the program unit in which it appears.

Oridnarily, for multidimensional assumed-shape arrays, some classes of loop optimizations cannot be performed
when an assumed-shape dummy array is referenced or defined in a loop or an array assignment statement. The
lost optimizations and the additional copy operations performed can significantly reduce the performance of a
procedure that uses assumed-shape dummy arrays when compared to an equivalent procedure that uses explicit-
shape array dummy arguments. This directive may provide significant performance improvement depending on
certain factors such as greater numbers of assumed-shape arrays and smaller array sizes.

[NO]UNROLL
!DIR$ UNROLL
!DIR$ NOUNROLL
n Specifies the total number of loop body copies to be generated. n is an integer value from 0 through 1024.

If a value for n is specified, the compiler unrolls the loop by that amount. If n is not specified, the compiler
determines if it is appropriate to unroll the loop, and if so, the unroll amount.
The subsequent DO loop is not unrolled if UNROLL0, UNROLL1, or NOUNROLL are specified. These directives
are equivalent.

Scope: Local

Cray Fortran Directive Use

 86

The unroll directive allows the user to control unrolling for individual loops or to specify no unrolling of a loop.
Loop unrolling can improve program performance by revealing cross-iteration memory optimization opportunities
such as read-after-write and read-after-read. The effects of loop unrolling also include:

● Improved loop scheduling by increasing basic block size

● Reduced loop overhead

● Improved chances for cache hits

Disable loop unrolling for the next loop. The NOUNROLL directive is functionally equivalent to the UNROLL 0 and
UNROLL 1 directives. The n argument applies only to the UNROLL directive. If a value for n is not specified, the
compiler will determine the number of copies to generate based on the number of statements in the loop nest.
Note: The compiler cannot always safely unroll non-innermost loops due to data dependencies. In these cases,
the directive is ignored. The UNROLL directive can be used only on loops with iteration counts that can be
calculated before entering the loop. If UNROLL is specified on a loop that is not the innermost loop in a loop nest,
the inner loops must be nested perfectly. That is, all loops in the nest can contain only one loop, and the
innermost loop can contain work.

Unroll outer loops

Assume that the outer loop of the following nest will be unrolled by two:

!DIR$ UNROLL 2
 DO I = 1, 10
 DO J = 1,100
 A(J,I) = B(J,I) + 1
 END DO
 END DO

With outer loop unrolling, the compiler produces the following nest, in which the two bodies of the
inner loop are adjacent to each other:

DO I = 1, 10, 2
 DO J = 1,100
 A(J,I) = B(J,I) + 1
 END DO
 DO J = 1,100
 A(J,I+1) = B(J,I+1) + 1
 END DO
END DO

The compiler jams, or fuses, the inner two loop bodies together, producing the following nest:

DO I = 1, 10, 2
 DO J = 1,100
 A(J,I) = B(J,I) + 1
 A(J,I+1) = B(J,I+1) + 1
 END DO
END DO

Cray Fortran Directive Use

 87

Illegal unrolling of outer loops

Outer loop unrolling is not always legal because the transformation can change the semantics of
the original program. For example, unrolling the following loop nest on the outer loop would
change the program semantics because of the dependency between A(...,I) and A(...,I+1):

!DIR$ UNROLL 2
 DO I = 1, 10
 DO J = 1,100
 A(J,I) = A(J-1,I+1) + 1
 END DO
 END DO

Unrolling nearest neighbor pattern

The following example shows unrolling with nearest neighbor pattern. This allows register reuse
and reduces memory references from 2 per trip to 1.5 per trip.

!DIR$ UNROLL 2
 DO J = 1,N
 DO I = 1,N ! VECTORIZE
 A(I,J) = B(I,J) + B(I,J+1)
 ENDDO
 ENDDO

The preceding code fragment is converted to the following code:

DO J = 1,N,2 ! UNROLLED FOR REUSE OF B(I,J+1)
 DO I = 1,N ! VECTORIZED
 A(I,J) = B(I,J) + B(I,J+1)
 A(I,J+1) = B(I,J+1) + B(I,J+2)
 END DO
END DO

Cray Fortran Directive Use

 88

7 Source Preprocessing
Source preprocessing helps port a program from one platform to another by allowing source text to be specified
that is platform specific.

For a source file to be preprocessed automatically, it must have an uppercase extension, either .F or .FOR (for a
file in fixed source form), or .F90, F95,.F03, .F08, or .FTN (for a file in free source form). To specify preprocessing
of source files with other extensions, including lowercase ones, use the -eP or -eZ options described in Command
Line Options.

General Rules
Alter the source code through source preprocessing directives. These directives are fully explained below in
Directives. The directives must be used according to the following rules:

● Do not use source preprocessor (#) directives within multiline compiler directives (CDIR$, !DIR$, CSD$, !CSD
$, C$OMP, or !$OMP).

● A source file that contains an #if directive can not be included without a balancing #endif directive within the
same file.

● The #if directive includes the #ifdef and #ifndef directives.

● If a directive is too long for one source line, the backslash character (\) is used to continue the directive on
successive lines. Successive lines of the directive can begin in any column.

● The backslash character (\) can appear in any location within a directive in which white space can occur. A
backslash character (\) in a comment is treated as a comment character. It is not recognized as signaling
continuation.

● Every directive begins with the pound character (#), and the pound character (#) must be in column 1.

● Blank and tab (HT) characters can appear between the pound character (#) and the directive keyword.

● Form feed (FF) or vertical tab (VT) characters cannot be written to separate tokens on a directive line. That is,
a source preprocessing line must be continued, by using a backslash character (\), if it spans source lines.

● Blanks are significant, so the use of spaces within a source preprocessing directive is independent of the
source form of the file. The fields of a source preprocessing directive must be separated by blank or tab (HT)
characters.

● Any user-specified identifier that is used in a directive must follow Fortran rules for identifier formation. The
exceptions to this rule are as follows:

○ The first character in a source preprocessing name (a macro name) can be an underscore character (_).

○ Source preprocessing names are significant in their first 132 characters whereas a typical Fortran
identifier is significant only in its first 63 characters.

● Source preprocessing identifier names are case sensitive.

● Numeric literal constants must be integer literal constants or real literal constants, as defined for Fortran.

Source Preprocessing

 89

● Comments written in the style of the C language, beginning with /* and ending with */, can appear anywhere
within a source preprocessing directive in which blanks or tabs can appear. The comment, however, must
begin and end on a single source line.

● Directive syntax allows an identifier to contain the ! character. Therefore, placing the ! character to start a
Fortran comment on the same line as the directive should be avoided.

Directives
The blanks shown in the syntax descriptions of the source preprocessing directives are significant. The tab
character (HT) can be used in place of a blank. Multiple blanks can appear wherever a single blank appears in a
syntax description.

● #include Directive

The #include directive directs the system to use the content of a file. Just as with the INCLUDE line path
processing defined by the Fortran standard, an #include directive effectively replaces that directive line by
the content of filename. This directive has the following formats:

#include "filename"

#include <filename>

filename A file or directory to be used.

In the first form, if filename does not begin with a slash (/) character, the system searches for the
named file, first in the directory of the file containing the #include directive, then in the
sequence of directories specified by the -I option(s) on the ftn command line, and then the
standard (default) sequence. If filename begins with a slash (/) character, it is used as is and
is assumed to be the full path to the file.

The second form directs the search to begin in the sequence of directories specified by the -I
option(s) on the ftn command line and then search the standard (default) sequence.

The Fortran standard prohibits recursion in INCLUDE files, so recursion is also prohibited in the #include
form.

The #include directives can be nested.

When the compiler is invoked to do only source preprocessing, not compilation, text will be included by
#include directives but not by Fortran INCLUDE lines.

● #define Directive

The #define directive allows for the declaration of a variable and assign a value to the variable. It also
allows the definition of a function-like macro. This directive has the following format:

#define identifier value

#define identifier (dummy_arg_list) value

The first format defines an object-like macro (also called a source preprocessing variable), and the second
defines a function-like macro. In the second format, the left parenthesis that begins the dummy_arg_list
must immediately follow the identifier, with no intervening white space.

Source Preprocessing

 90

identifier The name of the variable or macro being defined.

Rules for Fortran variable names apply; that is, the name cannot have a leading
underscore character (_). For example, ORIG is a valid name, but _ORIG is invalid.

dummy_arg_list A list of dummy argument identifiers.

value The value is a sequence of tokens. The value can be continued onto more than one
line using backslash (\) characters.

If a preprocessor identifier appears in a subsequent #define directive without being the subject of an
intervening #undef directive, and the value in the second #define directive is different from the value in
the first #define directive, then the preprocessor issues a warning message about the redefinition. The
second directive's value is used.

When an object-like macro's identifier is encountered as a token in the source file, it is replaced with the value
specified in the macro's definition. This is referred to as an invocation of the macro.

The invocation of a function-like macro is more complicated. It consists of the macro's identifier, immediately
followed by a left parenthesis with no intervening white space, then a list of actual arguments separated by
commas, and finally a terminating right parenthesis. There must be the same number of actual arguments in
the invocation as there are dummy arguments in the #define directive. Each actual argument must be
balanced in terms of any internal parentheses. The invocation is replaced with the value given in the macro's
definition, with each occurrence of any dummy argument in the definition replaced with the corresponding
actual argument in the invocation.

For example, the following program prints Hello, world. when compiled and run:

 PROGRAM P
#define GREETING 'Hello, world.'
 PRINT *, GREETING
 END PROGRAM P

The following program prints Hello, world. when compiled and run:

 PROGRAM P
#define GREETING(str1, str2) str1, str1, str2
 PRINT *, GREETING('Hello, ', 'world.')
 END PROGRAM P

● #undef Directive

The #undef directive sets the definition state of identifier to an undefined value. If identifier is not
currently defined, the #undef directive has no effect. This directive has the following format:

#undef identifier

identifier The name of the variable or macro being defined.

● # (Null) Directive

The null directive simply consists of the pound character (#) in column 1 with no significant characters
following it. That is, the remainder of the line is typically blank or is a source preprocessing comment. This
directive is generally used for spacing out other directive lines.

● Conditional Directives

Source Preprocessing

 91

Conditional directives cause lines of code to either be produced by the source preprocessor or to be skipped.
The conditional directives within a source file form if-groups. An if-group begins with an #if, #ifdef, or
#ifndef directive, followed by lines of source code that may or may not be skipped. Several similarities exist
between the Fortran IF construct and if-groups:

○ The #elif directive corresponds to the ELSE IF statement.

○ The #else directive corresponds to the ELSE statement.

○ Just as an IF construct must be terminated with an END IF statement, an if-group must be terminated
with an #endif directive.

○ Just as with an IF construct, any of the blocks of source statements in an if-group can be empty. For
example, the following directives can be written:

#if MIN_VALUE == 1
#else
 ...
#endif

Determining which group of source lines (if any) to compile in an if-group is essentially the same as the
Fortran determination of which block of an IF construct should be executed.

● #if Directive

The #if directive has the following format:

#if expression

expression An expression. The values in expression must be integer literal constants or previously
defined preprocessor variables. The expression is an integer constant expression as defined
by the C language standard. All the operators in the expression are C operators, not Fortran
operators. The expression is evaluated according to C language rules, not Fortran
expression evaluation rules.

Note that unlike the Fortran IF construct and IF statement logical expressions, expression in
an #if directive need not be enclosed in parentheses.

The #if expression can also contain the unary defined operator, which can be used in either of the
following formats:

○ defined identifier

○ defined (identifier)

When the defined subexpression is evaluated, the value is 1 if identifier is currently defined, and 0 if it
is not.

All currently defined source preprocessing variables in expression, except those that are operands of
defined unary operators, are replaced with their values. During this evaluation, all source preprocessing
variables that are undefined evaluate to 0.

Note that the following two directives are not equivalent:

○ #if X

Source Preprocessing

 92

○ #if defined(X)
In the first case, the condition is true if X has a nonzero value. In the second case, the condition is true only if
X has been defined (has been given a value that could be 0).

● #ifdef Directive

The #ifdef directive is used to determine if identifier is predefined by the source preprocessor, has
been named in a #define directive, or has been named in a ftn -D command line option. This directive
has the following format:

#ifdef identifier

The #ifdef directive is equivalent to either of the following two directives:

○ #ifdefined identifier

○ #ifdefined (identifier)

● #ifndef Directive

The #ifndef directive tests for the presence of an identifier that is not defined. This directive has the
following format:

#ifndef identifier

This directive is equivalent to either of the following two directives:

○ #if ! defined identifier

○ #if ! defined (identifier)

● #elif Directive

The #elif directive serves the same purpose in an if-group as does the ELSE IF statement of a Fortran IF
construct. This directive has the following format:

#elif expression

expression The expression follows all the rules of the integer constant expression in an #if directive.

● #else Directive

The #else directive serves the same purpose in an if-group as does the ELSE statement of a Fortran IF
construct. This directive has the following format:

#else

● #endif Directive

The #endif directive serves the same purpose in an if-group as does the END IF statement of a Fortran IF
construct. This directive has the following format:

#endif

Source Preprocessing

 93

Predefined Macros
The Cray Fortran compiler source preprocessing supports a number of predefined macros. They are divided into
groups as follows:

● Macros based on the host machine

● Macros based on CLE system targets

● Macros based on the Cray Fortran compiler

● Macros based on the source file

The following predefined macros are based on the host system (the system upon which the compilation is
being done):

unix, __unix,
__unix__

Always defined. (The leading characters in the second form consist of 2 consecutive
underscores; the third form consists of 2 leading and 2 trailing underscores.)

The following predefined macros are based on CLE systems as targets:

_ADDR64 Defined for CLE systems as targets. The target system must have 64-bit address registers.

_OPENMP Defined as the publication date of the OpenMP standard supported, as a string of the form
yyyymm.

_MAXVL_8 Defined as 16, the number of 8-bit elements that fit in an XMM register ("vector length"). On
targets that support AVX, defined as 32, the number of 8-bit elements that fit in a YMM
register ("vector length").

_MAXVL_16 Defined as 8. On targets that support AVX, defined as 16.

_MAXVL_32 Defined as 4. On targets that support AVX, defined as 8.

_MAXVL_64 Defined as 2. On targets that support AVX, defined as 4.

_MAXVL_128 Defined as 0. On targets that support AVX, defined as 2.

The following macros are based on the Cray Fortran Compiler:

_CRAYFTN Defined as 1.

_CRAY_COARRAY Defined as 1 if -hcaf is specified on the command line. If -hnocaf is specified, this
macro is undefined.

The following predefined macros are based on the source file:

__line__, __LINE__ Defined to be the line number of the current source line in the source file.

__file__, __FILE__ Defined to be the name of the current source file.

__date__, __DATE__ Defined to be the current date in the form mm/dd/yy.

__time__, __TIME__ Defined to be the current in the form hh:mm:ss.

Command Line Options
The following ftn command line options affect source preprocessing:

● The -D identifier=value option, which defines variables used for source preprocessing. For more
information about this option, see -D identifier=value.

Source Preprocessing

 94

● The -dF option, which controls macro expansion in Fortran source statements. For more information about
this option, see -d disable_opt and -e enable_opt .

● The -eP option, which performs source preprocessing on file.f90,file.F90, file.F95, file.F03,
file.F08, file.ftn, or file.FTN but does not compile. The -eP option produces file.i. For more
information about this option, see -d disable_opt and -e enable_opt .

● The -eZ option, which performs source preprocessing and compilation on file.f90, file.F90, file.F95,
file.F03, file.F08, file.ftn, or file.FTN. The -eZ option produces file.i. For more information
about this option, see -d disable_opt and -e enable_opt .

● The -U identifier , identifier ... option, which undefines variables used for source preprocessing. For
more information about this option, see -U identifier ,identifier....

The -D identifier =value and -U identifier , identifier ... options are ignored unless one of the
following is true:

○ The Fortran input source file is specified as either file.f90,file.F90, file.F95, file.F03, file.F08,
file.ftn, or file.FTN.

○ The -eP or -eZ options have been specified.

Source Preprocessing

 95

8 OpenMP Overview
The OpenMP API provides a parallel programming model that is portable across shared memory architectures
from Cray and other vendors. The OpenMP specification is accessible at http://openmp.org/wp/openmp-
specifications/.

Supported Version
CCE supports the OpenMP API, Version 4.5, with the following exceptions. The most up-to-date exceptions are
listed on the man pages:

● Task switching is not implemented. The thread that starts executing a task is the thread that finishes the task.

● Support for OpenMP Random Access Iterators (RAIs) in the C++ Standard Template Library (STL) is
deferred.

● Cancellation does not destruct/deallocate implicitly private local variables. It correctly handles explicitly private
variables.

● simd functions will not vectorize if the function definition is not visible for inlining at the callsite.

● The device clause is not supported. The other mechanisms for selecting a default device are supported:
OMP_DEFAULT_DEVICE and omp_set_default_device.

● The only API calls allowed in target regions are: omp_is_initial_device, omp_get_thread_num,
omp_get_num_threads, omp_get_team_num, and omp_get_num_teams.

● Parallel constructs are supported in target regions, but they are limited to one thread.

● User-defined reductions are not supported in target regions.

● Individual structure members are not supported in the map clause or the target update construct. Instead,
CCE only supports mapping and updating entire structure variables, handling all of the members together as
a single aggregate object.

Compiling
By default, the CCE compiler recognizes OpenMP directives. These CCE options affect OpenMP applications:

● -h [no]omp
● -h threadn

Executing
For OpenMP applications, use both the OMP_NUM_THREADS environment variable to specify the number of
threads and the aprun -ddepth option to specify the number of CPUs hosting the threads. The number of
threads specified by OMP_NUM_THREADS should not exceed the number of cores in the CPU. If neither the
OMP_NUM_THREADS environment variable nor the omp_set_num_threads call is used to set the number of

OpenMP Overview

 96

http://openmp.org/wp/openmp-specifications/
http://openmp.org/wp/openmp-specifications/

OpenMP threads, the system defaults to 1 thread. For further information, including example OpenMP programs,
see the Cray Application Developer's Environment User's Guide.

Debugging
The -g option provides debugging support for OpenMP directives. The -g option, when specified with no
optimization options or with -O0, provides debugging support identical to specifying the -G0 option. If any
optimization is specified, -g is ignored. This level of debugging implies -homp which means that most
optimizations disabled but OpenMP directives are recognized, and -h fp0. To debug without OpenMP, use -g -
xomp or -g -hnoomp, which will disable OpenMP and turn on debugging.

OpenMP Implementation Defined Behavior
The OpenMP Application Program Interface Specification, presents a list of implementation defined behaviors.
The Cray implementation is described in the following sections.

Atomicity of memory access by multiple threads
When multiple threads access the same shared memory location and at least one thread is a write, threads
should be ordered by explicit synchronization to avoid data race conditions and the potential for non-deterministic
results. Always use explicit synchronization for any access smaller than one byte.

Internal Control Variables
Table 8. Initial Values of OpenMP ICVs

ICV Initial Value Note

nthreads-var 1

dyn-var TRUE Behaves according to Algorithm 2-1
of the specification.

run-sched-var static, 0

stacksize-var 128 MB

wait-policy-var ACTIVE

thread-limit-var 64 Threads may be dynamically
created up to an upper limit which is
4 times the number of cores/node. It
is up to the programmer to try to
limit oversubscription.

max-active-levels-var 4095

def-sched-var static, 0 The chunksize is rounded up to
improve alignment for vectorized
loops.

OpenMP Overview

 97

http://openmp.org/wp/openmp-specifications/

Dynamic Adjustment of Threads
The ICV dyn-var is enabled by default. Threads may be dynamically created up to an upper limit which is 4
times the number of cores/node. It is up to the programmer to try to limit oversubscription.

If a parallel region is encountered while dynamic adjustment of the number of threads is disabled, and the number
of threads specified for the parallel region exceeds the number that the runtime system can supply, the program
terminates. The number of physical processors actually hosting the threads at any given time is fixed at program
startup and is specified by the aprun -d depth option. The OMP_NESTED environment variable and the
omp_set_nested() call control nested parallelism. To enable nesting, set OMP_NESTED to true or use the
omp_set_nested() call. Nesting is disabled by default.

Tasks
There are no untied tasks in this implementation of OpenMP. There are also no implementation-defined task
scheduling points.

Directives and Clauses
● atomic directive

When supported by the target architecture, atomic directives are lowered into hardware atomic
instructions. Otherwise, atomicity is guaranteed with a lock. OpenMP atomic directives are compatible
with C11 and C++11 atomic operations, as well as GNU atomic builtins.

● do and parallel do directives

For the schedule(guided,chunk) clause, the size of the initial chunk for the master thread and other
team members is approximately equal to the trip count divided by the number of threads.
For the schedule(runtime) clause, the schedule type and chunk size can be chosen at run time by
setting the OMP_SCHEDULE environment variable. If this environment variable is not set, the schedule type
and chunk size default to static and 0, respectively.

In the absence of the schedule clause, the default schedule is static and the default chunk size is
approximately the number of iterations divided by the number of threads.

● parallel directive

If a parallel region is encountered while dynamic adjustment of the number of threads is disabled, and the
number of threads specified for the parallel region exceeds the number that the runtime system can
supply, the program terminates.
The number of physical processors actually hosting the threads at any given time is fixed at program
startup and is specified by the aprun -d depth option.

The OMP_NESTED environment variable and the omp_set_nested() call control nested parallelism. To
enable nesting, set OMP_NESTED to true or use the omp_set_nested() call. Nesting is disabled by
default.

● loop directive

The integer type or kind used to compute the iteration count of a collapsed loop are signed 64-bit integers,
regardless of how the original induction variables and loop bounds are defined. If the schedule specified
by the runtime schedule clause is specified and run-sched-var is auto, then the Cray implementation
generates a static schedule.

OpenMP Overview

 98

● private clause

If a variable is declared as private, the variable is referenced in the definition of a statement function, and
the statement function is used within the lexical extent of the directive construct, then the statement
function references the private version of the variable.

● sections construct

Multiple structured blocks within a single sections construct are scheduled in lexical order and an
individual block is assigned to the first thread that reaches it. It is possible for a different thread to execute
each section block, or for a single thread to execute multiple section blocks. There is not a guaranteed
order of execution of structured blocks within a section.

● single directive

A single block is assigned to the first thread in the team to reach the block; this thread may or may not be
the master thread.

● threadprivate directive

The threadprivate directive specifies that variables are replicated, with each thread having its own copy. If
the dynamic threads mechanism is enabled, the definition and association status of a thread's copy of the
variable is undefined, and the allocation status of an allocatable array is undefined.

● thread_limit clause

The thread_limit clause places a limit on the number of threads that a teams construct may create.
For NVIDIA GPU accelerator targets, this clause controls the number of CUDA threads per thread block.
Only constant integer expressions are supported. If CCE does not support a thread_limit expression,
then it will issue a warning message indicating the default value that will be used instead.

Library Routines
● omp_set_num_threads

Sets nthreads-var to a positive integer. If the argument is < 1, then set nthreads-var to 1.

● omp_set_schedule
Sets the schedule type as defined by the current specification. There are no implementation defined
schedule types.

● omp_set_max_active_levels
Sets the max-active-levels-var ICV. Defaults to 4095. If argument is < 1, then set to 1.

● omp_set_dynamic()
The omp_set_dynamic() routine enables or disables dynamic adjustment of the number of threads
available for the execution of subsequent parallel regions by setting the value of the dyn-var ICV. The
default is on.

● omp_set_nested()

OpenMP Overview

 99

The omp_set_nested() routine enables or disables nested parallelism, by setting the nest-var
internal control variable (ICV). The default is false.

● omp_get_max_active_levels
There is a single max-active-levels-var ICV for the entire runtime system. Thus, a call to
omp_get_max_active_levels will bind to all threads, regardless of which thread calls it.

Runtime Library Definitions
It is implementation defined whether the include file omp_lib.h or the module omp_lib (or both) is provided. It is
implementation defined whether any of the OpenMP runtime library routines that take an argument are extended
with a generic interface so arguments of different KIND type can be Fortran accommodated . Both omp_lib.h and
the module omp_lib are provided. Cray Fortran uses generic interfaces for routines. If an OMP runtime library
routine is defined to be generic, use of arguments of kind other than those specified by OMP_*_KIND constants is
undefined.

Environment Variables
OMP_SCHEDULE The default values for this environment variable are static for type and 0 for chunk.

For the schedule (guided,chunk) clause, the size of the initial chunk for the master
thread and other team members is approximately equal to the trip count divided by
the number of threads. For the schedule(runtime) clause, the schedule type and
chunk size can be chosen at run time by setting the OMP_SCHEDULE environment
variable. If this environment variable is not set, the schedule type and chunk size
default to static and 0, respectively. In the absence of the schedule clause, the
default schedule is static and the default chunk size is approximately the number
of iterations divided by the number of threads.

OMP_NUM_THREADS If this environment variable is not set and the omp_set_num_threads() routine is
not used to set the number of OpenMP threads, the default is 1 thread. The
maximum number of threads per compute node is 4 times the number of allocated
processors. If the requested value of OMP_NUM_THREADS is more than the number
of threads an implementation can support, the behavior of the program depends
on the value of the OMP_DYNAMIC environment variable. If OMP_DYNAMIC is false,
the program terminates. If OMP_DYNAMIC is true, it uses up to 4 times the number
of allocated processors. For example, on a 8-core Cray XE system, this means the
program can use up to 32 threads per compute node.

OMP_PROC_BIND The default value is false. When set to false, the OpenMP runtime does not
attempt to set or change affinity binding for OpenMP threads. When not false, this
environment variable controls the policy for binding threads to places (as specified
by the OMP_PLACES environment variable). Care must be taken when using
OpenMP affinity binding with other binding mechanisms. For example, when
launching an application with ALPS aprun, the -cc cpu affinity binding option (the
default) should only be used with OMP_PROC_BIND=false. Otherwise, the ALPS/
CLE binding will severely over-constrain OpenMP binding. When setting
OMP_PROC_BIND to a value other than false, applications should be launched with
-cc depth or -cc none. Using -cc depth is particularly important when running
multiple PEs per compute node, since it will allow each PE to bind to CPUs in non-

OpenMP Overview

 100

overlapping subsets of the node. Valid values for this environment variable are
true, false, spread, close, and master. A value of true is equivalent to spread.

OMP_PLACES The default value is threads. This environment variable has no effect if
OMP_PROC_BIND=false (the default); when OMP_PROC_BIND is not false, then
OMP_PLACES defines a set of places, or CPU affinity masks, to which threads are
bound. When using the threads, cores, and sockets keywords, places are
constructed according to the CPU topology presented by Linux. However, the
place list is always constrained by the initial CPU mask of the master thread. As a
result, specific numeric CPU identifiers appearing in OMP_PLACES will map onto
CPUs in the initial CPU affinity mask. If an application is launched with -cc none,
then numeric CPU identifiers will exactly match Linux CPU numbers. If instead it is
launched with -cc depth, then numeric CPU identifier 0 will map to the first CPU in
the initial affinity mask for the master thread; identifier 1 will map to the second
CPU in the initial mask, and so on. This allows the same OMP_PLACES
environment variable for all PEs to be used, even when launching multiple PEs per
node – the -cc depth setting ensures that each PE begins executing with a non-
overlapping initial affinity mask, allowing each instance of the OpenMP runtime to
assign thread affinity within those non-overlapping affinity masks.

OMP_DYNAMIC The default value is true.

OMP_NESTED The default value is false.

OMP_STACKSIZE The default value for this environment variable is 128 MB.

OMP_WAIT_POLICY Provides a hint to an OpenMP implementation about the desired behavior of
waiting threads by setting the wait-policy-var ICV. A compliant OpenMP
implementation may or may not abide by the setting of the environment variable.
The default value for this environment variable is active.

OMP_MAX_ACTIVE_LEVELS The default value is 4095.

OMP_THREAD_LIMIT Sets the number of OpenMP threads to use for the entire OpenMP program by
setting the thread-limit-var ICV. The Cray implementation defaults to 4 times the
number of available processors.

Cray-specific OpenMP API
This section describes Open MP API specific to Cray.

cray_omp_set_wait_policy
subroutine cray_omp_set_wait_policy (policy)
 character(*), intent(in) :: policy

This routine allows dynamic modification of the wait-policy-var ICV value, which corresponds to the
OMP_WAIT_POLICY environment variable. The policy argument provides a hint to the OpenMP runtime library
environment about the desired behavior of waiting threads; acceptable values are ACTIVE or PASSIVE (case

OpenMP Overview

 101

insensitive). It is an error to call this routine in an active parallel region. The OpenMP runtime library supports a
"wait policy" and a "contention policy," both of which can be set with the following environment variables:

OMP_WAIT_POLICY=(ACTIVE|PASSIVE)
CRAY_OMP_CONTENTION_POLICY=(Automatic|Standard|MonitorMwait)

These environment variables allow the policies to be set once at program launch for the entire execution.
However, in some circumstances it would be useful for the programmer to explicitly change the policy at various
points during a program's execution. This Cray-specific routine allows the programmer to dynamically change the
wait policy (and potentially the contention policy). This addresses the situation when an application needs
OpenMP for the first part of program execution, but there is a clear point after which OpenMP is no longer used.
Unfortunately, the idle OpenMP threads still consume resources since they are waiting for more work, resulting in
performance degradation for the remainder of the application. A passive-waiting policy might eliminate the
performance degradation after OpenMP is no longer needed, but the developer may still want an active-waiting
policy for the OpenMP-intensive region of the application. This routine notifies all threads of the policy change at
the same time, regardless of whether they are idle or active (to avoid deadlock from waiting and signaling threads
using different policies).

CRAY_OMP_CHECK_AFFINITY
Set the CRAY_OMP_CHECK_AFFINITY variable to TRUE at execution time to display affinity binding for each
OpenMP thread. The messages contain hostname, process identifier, OS thread identifier, OpenMP thread
identifier, and affinity binding.

omp_lib
If the omp_lib module is not used and the kind of the actual argument does not match the kind of the dummy
argument, the behavior of the procedure is undefined.

omp_get_wtime omp_get_wtick
These procedures return real(kind=8) values instead of double precision values.

OpenMP Accelerator Support
The OpenMP 4.5 target directives are supported for targeting NVIDIA GPUs or the current CPU target. An
appropriate accelerator target module must be loaded to use target directives.

When targeting NVIDIA GPUs, teams constructs are mapped to CUDA thread blocks and simd constructs are
mapped to CUDA threads within a thread block. For teams regions that do not contain any simd constructs, CCE
will still take advantage of all available CUDA parallelism, either by automatically parallelizing nested loops across
CUDA threads, or by mapping the teams parallelism across both CUDA thread blocks and threads. Currently,
parallel constructs appearing within a teams construct are executed with a single thread. CCE will attempt to
select an appropriate number CUDA threads and thread blocks for each construct based on the code that
appears in it. For a given teams construct, users may use the num_teams and thread_limit clauses to specify
the number of CUDA thread blocks and threads per thread block, respectively.

Optimizations
A certain amount of overhead is associated with multiprocessing a loop. If the work occurring in the loop is small,
the loop can actually run slower by multiprocessing than by single processing. To avoid this, make the amount of
work inside the multiprocessed region as large as possible, as is shown in the following examples.

OpenMP Overview

 102

Consider the following code:

DO K = 1, N
 DO I = 1, N
 DO J = 1, N
 A(I,J) = A(I,J) + B(I,K) * C(K,J)
 END DO
 END DO
END DO

For the preceding code fragment, parallelize the J loop or the I loop. The K loop cannot be parallelized because
different iterations of the K loop read and write the same values of A(I,J). Try to parallelize the outermost DO
loop if possible, because it encloses the most work. In this example, that is the I loop. For this example, use the
technique called loop interchange. Although the parallelizable loops are not the outermost ones, the loops can be
reordered to make one of them outermost.

Thus, loop interchange would produce the following code fragment:

!$OMP PARALLEL DO PRIVATE(I, J, K)
 DO I = 1, N
 DO K = 1, N
 DO J = 1, N
 A(I,J) = A(I,J) + B(I,K) * C(K,J)
 END DO
 END DO
 END DO

Now the parallelizable loop encloses more work and shows better performance. In practice, relatively few loops
can be reordered in this way. However, it does occasionally happen that several loops in a nest of loops are
candidates for parallelization. In such a case, it is usually best to parallelize the outermost one.

Occasionally, the only loop available to be parallelized has a fairly small amount of work. It may be worthwhile to
force certain loops to run without parallelism or to select between a parallel version and a serial version, on the
basis of the length of the loop.

The loop is worth parallelizing if N is sufficiently large. To overcome the parallel loop overhead, N needs to be
around 1000, depending on the specific hardware and the context of the program. The optimized version would
use an IF clause on the PARALLEL DO directive:

!$OMP PARALLEL DO IF (N .GE. 1000), PRIVATE(I)
 DO I = 1, N
 A(I) = A(I) + X*B(I)
 END DO

aprun Options
The -d depth option of the aprun command is required to reserve more than one physical processor for an
OpenMP process. For best performance, depth should be the same as the maximum number of threads the
program uses. The maximum number of threads per compute node is 4 times the number of allocated
processors.

This example shows how to reserve the physical processors:

aprun -d depth ompProgram

OpenMP Overview

 103

If neither the OMP_NUM_THREADS environment variable nor the omp_set_num_threads() call is used to set the
number of OpenMP threads, the system defaults to 1 thread.

The aprun options -n processes and -N processes_per_node are compatible with OpenMP but do not
directly affect the execution of OpenMP programs.

OpenMP Overview

 104

9 OpenACC Use
OpenACC is a parallel programming model which facilitates the use of an accelerator device attached to a host
CPU. The OpenACC API allows the programmer to supplement information available to the compilers in order to
offload code from a host CPU to an attached accelerator device.

This release supports the OpenACC Application Programming Interface, Version 2.0 standard developed by PGI,
Cray Inc., NVIDIA, with support from CAPS entreprise.

Refer to the OpenACC home page at http://www.openacc-standard.org. Under the Downloads link, select the
OpenACC 2.0 Specification.

For the most current information regarding the Cray implementation of OpenACC, see the intro_openacc(7)
man page. See the OpenACC.EXAMPLES(7) man page for example OpenACC codes.

OpenACC Execution Model
The CPU host offloads compute intensive regions to the accelerator device. The accelerator executes parallel
regions, which contain work sharing loops executed as kernels on the accelerator. The CPU host manages
execution on the accelerator by allocating memory on the accelerator, initiating data transfer, sending code,
passing arguments to the region, waiting for completion, transferring accelerator results back to the CPU host and
releasing memory.

The accelerator on the Cray system supports multiple levels of parallelism. The accelerator executes a kernel
composed of parallel threads or vectors. Vectors (threads) are grouped into sets called workers. Threads in a set
of workers are scheduled together and execute together. Workers are grouped into larger sets called gangs. One
or more gangs may comprise a kernel. To summarize, a kernel is executed as a set of gangs of workers of
vectors.

The compiler determines the number of gangs/workers/vectors based on the problem and then maps the vectors,
workers, and gangs onto the accelerator architecture. Specifying the number of gangs, workers, or vectors is
optional but may permit tuning to a particular target architecture. The way that the compiler maps a particular
problem onto a constellation of gangs, workers, and vectors which are then mapped onto the accelerator
architecture is implementation defined.

OpenACC terminology is situated in the context of the PGAS programming model. In the PGAS model, there may
be one or more Processing Elements (PEs) per XK node. Each PE is multi-threaded and each thread can execute
vector instructions. The PGAS thread concept is not the same as the OpenACC thread concept.

OpenACC Memory Model
The memory on the accelerator is separate from host memory. Accelerator device memory is not mapped onto
the host's virtual memory space. All data movement between host and accelerator memory is initiated by the host
through the library functions that move data. Also, it is not assumed that the accelerator can access host memory,
though it is supported by some devices. In this model, data movement between memories is managed by the
compiler according to OpenACC directives. The programmer needs to be aware of device memory size, as well
as memory bandwidth between host and device in order to effectively accelerate a region of code.

OpenACC Use

 105

http://www.openacc-standard.org

Current accelerators implement a weak memory model; they do not support memory coherence between
operations executed by different execution units - an execution unit is a hardware abstraction which can execute
one or more gangs. If an operation updates a memory location and another reads from the same location, or two
operations store a value to the same location, the hardware may not guarantee repeatable results. Some potential
errors of this type are prevented by the compiler, but it is possible to write an accelerator parallel region that
produces inconsistent results. Memory coherence is guaranteed when memory operations referencing the same
location are separated by an explicit barrier.

Map the OpenACC Programming Model onto Accelerator Components
The compiler maps the OpenACC execution model (kernels, gangs, workers, vectors) onto the accelerator
architecture as described in the following sections.

Stream Multiprocessors (SM) and Scalar Processor (SP) cores
On the Cray XK system, there is one accelerator per node. The accelerator architecture is comprised of two main
components - global memory and some number of streaming multiprocessors (SM). Each SM contains multiple
scalar processor (SP) cores, schedulers, special-function units, and memory which is shared among all the SP
cores. An SP core contains floating point, integer, logic, branching, and move and compare units. Each thread/
vector is executed by a core. The SM manages thread execution.

The OpenACC execution model maps to the NVIDIA GPU hardware as follows (GPU terms are in parenthesis):
One or more OpenACC kernels may execute on an GPU. The compiler divides a kernel into one or more gangs
(blocks) of vectors (threads). Several concurrent gangs (blocks) of threads may execute on one SM depending on
several factors, including memory requirements, compiler optimizations, or user directives. A single block (gang)
does not span SMs and will remain on one SM until completion. When the SM encounters a block (gang), each
gang (block) is further broken up into workers (warps) which are groups of threads to execute in parallel.
Scheduling occurs at the granularity of the worker (warp). Individual threads within a warp start together and
execute one common instruction at a time. If conditional branching occurs within a worker (warp), the warp
serially executes each branch path taken causing some threads to wait until threads converge back to the same
instruction. Data dependent conditional code within a warp usually has negative performance impact. Worker
(warp) threads also fetch data from memory together and when accessing global memory, the accesses of the
threads within a warp are grouped to minimize transactions. Each thread in a worker (warp) is executed on a
different SP core.

There may be up to 32 threads in a worker (warp) - a limit defined by the hardware.

See the intro_openacc(7) man page for more detail on Partition Mapping.

Memory
There is a hierarchy of memory spaces used by OpenACC threads. Each thread has its own private local
memory. Each gang of workers of threads has shared memory visible to all threads of the gang. All OpenACC
threads running on a GPU have access to the same global memory. Global memory on the accelerator is
accessible to the host CPU.

Mixed Model Support
OpenMP directives may appear inside of OpenACC data or host data regions only. OpenMP directives are not
allowed inside of any other OpenACC directives.

OpenACC may not appear inside OpenMP directives. To have OpenACC directives nested inside of OpenMP
constructs, place them in calls that are not inlined.

OpenACC Use

 106

Compile with OpenACC
The CCE compiler recognizes OpenACC directives, by default. Use either the ftn or cc command to compile.

The CCE compiler does not produce CUDA code. It generates PTX (Parallel Thread Execution) instructions which
are then translated into assembly.

Note the following interactions between directives and command line options.

● -x
The -x option accepts one or more directives as arguments. Directives specified with the -x option are
ignored during compilation. To ignore all directives, specify -x all. To ignore accelerator directives, specify
-x acc.

● -h [no]acc
-h noacc disables OpenACC directives.

● -h acc_model=option [:option ...]

Explicitly controls the execution and memory model utilized by the accelerator support system. The option
arguments identify the type of behavior desired. There are three option sets. Only one member of a set may
be used at a time; however, all three sets may be used together.

Default: auto_async_kernel:fast_addr:no_deep_copy
option Set 1:

auto_async_none Execute kernels and updates synchronously, unless there is an async clause present
on the kernels or update directive.

auto_async_kernel (Default) Execute all kernels asynchronously ensuring program order is maintained.

auto_async_all Execute all kernels and data transfers asynchronously, ensuring program order is
maintained.

● option Set 2:

no_fast_addr Use default types for addressing.

fast_addr (Default) Attempt to use 32 bit integers in all addressing to improve performance. Base
addresses remain as 64 bit. The performance is improved by potentially using fewer
registers and faster arithmetic for offset calculations. This optimization may result in incorrect
behavior for codes that make use within accelerator regions of any of the following: very
large arrays (offsets would require greater than 32 bits), very large array lower bounds (max
offset plus lower bound is greater than 32 bits), bitfields/other bit operations.

● option Set 3:

no_deep_copy Do not look inside of an object type to transfer sub-objects. Allocatable members of derived
type objects will not be allocated on the device.

deep_copy Look inside of derived type objects and recreate the derived type on the accelerator
recursively. A derived type object that contains an allocatable member will have memory
allocated on the device for the member.

OpenACC Use

 107

Module Support
To compile, ensure that PrgEnv-cray module is loaded and that it includes CCE 8.6 or later. Then, either load
the craype-accel-nvidia20 module for Fermi support or the craype-accel-nvidia35 module for Kepler
support.

The craype-accel-host module supports compiling and running an OpenACC application on the host X86
processor. This provides source code portability between systems with and without an accelerator. The
accelerator directives are automatically converted at compile time to OpenMP equivalent directives.

Use either the ftn or cc command to compile.

Debug
Use either Allinea DDT or Rogue Wave TotalView.

The following applies to all debuggers:

● To enable debugging, compile use the -g option.

● When compiling with the debug option (-g), CCE may require additional memory from the accelerator heap,
exceeding the 8MB default. In this case, there will be malloc failures during compilation. The environment
variable CRAY_ACC_MALLOC_HEAPSIZE specifies the accelerator heap size in bytes. It may be necessary to
increase the accelerator heap size to 32MB (33554432), 64MB (67108864), or greater by setting
CRAY_ACC_MALLOC_HEAPSIZE accordingly. The accelerator heap size defaults to 8MB.

● Debug one rank/image/thread/PE per node.

● CCE does not generate CUDA code, but generates PTX code. Debuggers will not display CUDA intermediate
code.

● To enter an OpenACC region using a debugger, breakpoints may be set inside the OpenACC region. It is not
possible to do a single step into the region from the code immediately prior to the start of an OpenACC
directive.

OpenACC Directives
For information on the OpenACC directives, see the OpenACC 2.0 Specification available at http://www.openacc-
standard.org.

For the most current information regarding the Cray implementation of OpenACC, see the intro_openacc(7)
man page. See the OpenACC.EXAMPLES(7) man page for example OpenACC codes.

Runtime Routines
Runtime routines defined by the standard specification are supported unless otherwise noted in the
intro_openacc(7) man page.

Extended OpenACC Run Time Library Routines
Extended OpenACC run time library routines are Cray-specific low level routines that give object oriented
programmers a mechanism for moving objects from the host CPU to the accelerator and copying memory
between the host and the accelerator. These routines are implemented in C. See the intro_openacc(7) man
page.

OpenACC Use

 108

http://www.openacc-standard.org
http://www.openacc-standard.org

Cray Fortran provides a wrapper interface to the C routines using ISO C bindings. To use these routine bindings
from Fortran, include the header file openacc_lib.h or use the openacc_lib module. Please see the example
"Using_OPENACC_LIB" on the OpenACC.EXAMPLES(7) man page.

Environment Variables
The following are environment variables are defined by the API specification:

● ACC_DEVICE_NUM
● ACC_DEVICE_TYPE
The following environment variable is Cray specific:

● CRAY_ACC_MALLOC_HEAPSIZE
Specifies the accelerator heap size in bytes. The accelerator heap size defaults to 8MB. When compiling with
the debug option (-g), CCE may require additional memory from the accelerator heap, exceeding the 8MB
default. In this case, there will be malloc failures during compilation. It may be necessary to increase the
accelerator heap size to 32MB (33554432), 64MB (67108864), or greater.

OpenACC Examples
See the OpenACC.EXAMPLES(7) man page for example OpenACC codes.

OpenACC Use

 109

10 Conformance Checks
The amount of error-checking of edit descriptors with input/output (I/O) list items during formatted READ and
WRITE statements can be selected through a compiler driver option or through an environment variable.

By default, the compiler provides only limited error-checking.

Use the compiler driver options to choose the table to be used for the conformance check. The table is then part
of the executable and no environment variable is required. The compiler driver options allow a choice of checking
or no checking with a particular version of the Fortran standard for formatted READ and WRITE. See the following
tables: RELAXED Compatibility Beteween Data Types and Data Edit Descriptors, STRICT77 Compatibility
Between Data Types and Data Edit Descriptors, and STRICT90 and STRICT95 Compatibility Between Data
Types and Data Edit Descriptors.

The environment variable FORMAT_TYPE_CHECKING is evaluated during execution. The environment variable
overrides a table chosen through the compiler driver option. The environment variable provides an intermediate
type of checking that is not provided by the compiler driver option. The environment variable
FORMAT_TYPE_CHECKING is described in Set Environment Variables to the Cray Fortran Compiler.

To select the least amount of checking, use one or more of the following ftn command line options.

● On Cray Linux Environment (CLE) systems with formatted READ, use:

ftn -W1,--defsym,_RCHK=_RNOCHK *.f(note the double dashes that precede defsym)

● On CLE systems with formatted WRITE, use:

ftn -W1,--defsym,_WCHK=_WNOCHK *.f

● On CLE systems with both formatted READ and WRITE, use:

ftn -W1,--defsym,_WCHK=_WNOCHK -W1,--defsym,_RCHK=_RNOCHK *.f

To select strict amount of checking for either FORTRAN 77 or Fortran 90, use one or more of the following
ftn command line options.

● On CLE systems with formatted READ, use:

ftn -W1,--defsym,_RCHK=_RCHK77 *.f
ftn -W1,--defsym,_RCHK=_RCHK90 *.f

● On CLE systems with formatted WRITE, use:

ftn -W1,--defsym,_WCHK=_WCHK77 *.f
ftn -W1,--defsym,_WCHK=_WCHK90 *.f

Conformance Checks

 110

● On CLE systems with both formatted READ and WRITE, use:

ftn -W1,--defsym,_WCHK=_WCHK77 -W1,--defsym,_RCHK=_RCHK77 *.f
ftn -W1,--defsym,_WCHK=_WCHK90 -W1,--defsym,_RCHK=_RCHK90 *.f

Conformance Checks

 111

11 Cray Fortran Language Extensions
The Cray Fortran Compiler supports extended features beyond those specified by the current standard. Some of
these extensions are widely implemented in other compilers and likely to become standard features in the future,
while others are unique and specific to Cray systems. The implementation of any extension may change in order
to conform to future language standards.

The listings provided by the compiler identify language extensions when the -e n command line option is
specified.

128-Bit Precision
The Fortran Compiler supports 128-bit floating point and 256-bit complex predefined types using the X86-64 ABI
definitions for type names and data layout. These types are sometimes referred to as "quad-precision". In Fortran,
use real(kind=16) and complex(kind=16) to declare variables of these types. In C and C++, use __float128, and
__float128 complex.

Fortran and C forms of intrinsic math functions (for example, QSIN, QCOS, QTAN, QSQRT, sinq, cosq, tanq) offer
full support for quad-precision types. See the intro_quad_precision(3i) man page for a complete list of
intrinsic functions that support quad-precision.

The base type itself uses 128 bits of storage with a guaranteed minimum alignment on a 128-bit boundary, little
endian, has a 15-bit exponent, a 113-bit mantissa, and an exponent bias of 16383, and is compatible with the gcc
implementation.

11.1 Characters, Lexical Tokens, and Source Form

Characters Allowed in Names
Variables, named constants, program units, common blocks, procedures, arguments, constructs, derived types
(types for structures), namelist groups, structure components, dummy arguments, and function results are among
the elements in a program that have a name. As extensions, the Cray Fortran compiler permits the following
characters in names:

alphanumeric_character currency_symbol

currency_symbol $

A name must begin with a letter and can consist of letters, digits, and underscores. The Cray Fortran compiler
permits use of the dollar sign ($) in a name, but it cannot be the first character of a name.

Cray Fortran Language Extensions

 112

Cray does not recommend using $ in user names because it can cause conflicts with the names of internal
variables or library routines.

Switch Source Forms
The Cray Fortran compiler allows switching between fixed and free source forms within a source or include file by
using the FIXED and FREE compiler directives.

Continuation Line Limit
The Cray Fortran compiler allows a statement to have an unlimited number of continuation lines. The Fortran
standard allows only 255 continuation lines.

D Lines in Fixed Source Form
The Cray Fortran compiler allows a D or d character to occur in column one in fixed source form. Typically, the
compiler treats a line with a D or d character in column one as a comment line. When the -e d command line
option is in effect, however, the compiler replaces the D or d character with a blank and treats the rest of the line
as a source statement. This can be used, for example, for debugging purposes if the rest of the line contains a
PRINT statement.

This functionality is controlled through the -e d and -d d options on the compiler command line. For more
information about these options, see the ftn(1) man page.

11.2 Types
The Cray Fortran compiler supports the following additional data types. This preserves compatibility with other
vendor's systems.

● Cray pointer

● Cray character pointer

● Boolean (or typeless)

The Cray Fortran compiler also supports the TYPEALIAS statement as a means of creating alternate names
for existing types and supports an expanded form of the ENUM statement.

Alternate Form of LOGICAL Constants
The Cray Fortran compiler accepts .T. and .F. as alternate forms of .true. and .false., respectively.

Cray Pointer Type
The Cray POINTER statement declares one variable to be a Cray pointer (that is, to have the Cray pointer data
type) and another variable to be its pointee. The value of the Cray pointer is the address of the pointee. This
POINTER statement has the following format:

POINTER (pointer_name, pointee_name (array_spec))
, (pointer_name, pointee_name (array_spec)) ...

pointer_name

Cray Fortran Language Extensions

 113

Pointer to the corresponding pointee_name. pointer_name contains the address of pointee_name. Only a
scalar variable can be declared type Cray pointer; constants, arrays, coarrays, statement functions, and external
functions cannot.

pointee_name

Pointee of corresponding pointer_name. Must be a variable name, array declarator, or array name. The value
of pointer_name is used as the address for any reference to pointee_name; therefore, pointee_name is not
assigned storage. If pointee_name is an array declarator, it can be explicit-shape (with either constant or
nonconstant bounds) or assumed-size.

array_spec

If present, this must be either an explicit_shape_spec_list, with either constant or nonconstant bounds) or
an assumed_size_spec. A codimension used to indicate a coarray may not appear in array_spec.

Fortran pointers are declared as follows:

POINTER :: object-name-list

Cray Fortran pointers and Fortran standard pointers cannot be mixed.

Example:

POINTER(P,B),(Q,C)

This statement declares Cray pointer P and its pointee B, and Cray pointer Q and pointee C; the pointer's current
value is used as the address of the pointee whenever the pointee is referenced.

An array that is named as a pointee in a Cray POINTER statement is a pointee array. Its array declarator can
appear in a separate type or DIMENSION statement or in the pointer list itself. In a subprogram, the dimension
declarator can contain references to variables in a common block or to dummy arguments. As with nonconstant
bound array arguments to subprograms, the size of each dimension is evaluated on entrance to the subprogram,
not when the pointee is referenced. For example:

POINTER(IX, X(N,0:M))

In addition, pointees must not be deferred-shape or assumed-shape arrays. An assumed-size pointee array is not
allowed in a main program unit.

Pointers can be used to access user-managed storage by dynamically associating variables and arrays to
particular locations in a block of storage. Cray pointers do not provide convenient manipulation of linked lists
because, for optimization purposes, it is assumed that no two pointers have the same value. Cray pointers also
allow the accessing of absolute memory locations.

The range of a Cray pointer or Cray character pointer depends on the size of memory for the machine in use.

Restrictions on Cray pointers are as follows:

● A Cray pointer variable should only be used to alias memory locations by using the LOC intrinsic.

● A Cray pointer cannot be pointed to by another Cray or Fortran pointer; that is, a Cray pointer cannot also be
a pointee or a target.

● A Cray pointer cannot appear in a PARAMETER statement or in a type declaration statement that includes
the PARAMETER attribute.

● A Cray pointer variable cannot be declared to be of any other data type.

Cray Fortran Language Extensions

 114

● A Cray character pointer cannot appear in a DATA statement.

● An array of Cray pointers is not allowed.

● A Cray pointer cannot be a component of a structure.

Restrictions on Cray pointees are as follows:

● A Cray pointee cannot appear in a SAVE, STATIC, DATA, EQUIVALENCE, COMMON, AUTOMATIC, or
PARAMETER statement or Fortran pointer statement.

● A Cray pointee cannot be a dummy argument; that is, it cannot appear in a FUNCTION, SUBROUTINE, or
ENTRY statement.

● A function value cannot be a Cray pointee.

● A Cray pointee cannot be a structure component.

● An equivalence object cannot be a Cray pointee.

Cray pointees can be of type character, but their Cray pointers are different from other Cray pointers; the two
kinds cannot be mixed in the same expression.

The Cray pointer is a variable of type Cray pointer and can appear in a COMMON list or be a dummy
argument in a subprogram.

The Cray pointee does not have an address until the value of the Cray pointer is defined; the pointee is stored
starting at the location specified by the pointer. Any change in the value of a Cray pointer causes subsequent
references to the corresponding pointee to refer to the new location.

Cray pointers can be assigned values in the following ways:

● A Cray pointer can be set as an absolute address. For example:

Q = 0

● Cray pointers can have integer expressions added to or subtracted from them and can be assigned to or from
integer variables. For example:

P = Q + 100

However, Cray pointers are not integers. For example, assigning a Cray pointer to a real variable is not
allowed.

The (nonstandard) LOC intrinsic function generates the address of a variable and can be used to define a
Cray pointer, as follows:

P = LOC(X)

The following example uses Cray pointers in the ways just described:

SUBROUTINE SUB(N)
 INTEGER WORDS
 COMMON POOL(100000), WORDS(1000)
 INTEGER BLK(128), WORD64
 REAL A(1000), B(N), C(100000-N-1000)
 POINTER(PBLK,BLK), (IA,A), (IB,B), &
 (IC,C), (ADDRESS,WORD64)
 ADDRESS = LOC(WORDS) + 64*KIND(WORDS)
 PBLK = LOC(WORDS)

Cray Fortran Language Extensions

 115

 IA = LOC(POOL)
 IB = IA + 1000*KIND(POOL)
 IC = IB + N*KIND(POOL)

BLK is an array that is another name for the first 128 words of array WORDS. A is an array of length 1000; it
is another name for the first 1000 elements of POOL. B follows A and is of length N. C follows B. A, B, and C
are associated with POOL. WORD64 is the same as BLK(65) because BLK(1) is at the initial address of
WORDS.

If a pointee is of a noncharacter data type that is one machine word or longer, the address stored in a pointer
is a word address. If the pointee is of type character or of a data type that is less than one word, the address
is a byte address. The following example also uses Cray pointers:

PROGRAM TEST
REAL X(*), Y(*), Z(*), A(10)
POINTER (P_X,X)
POINTER (P_Y,Y)
POINTER (P_Z,Z)
INTEGER*8 I,J

!USE LOC INTRINSIC TO SET POINTER MEMORY LOCATIONS
!*** RECOMMENDED USAGE, AS PORTABLE CRAY POINTERS ***
P_X = LOC(A(1))
P_Y = LOC(A(2))

!USE POINTER ARITHMETIC TO DEMONSTRATE COMPILER AND COMPILER
!FLAG DIFFERENCES
!*** USAGE NOT RECOMMENDED, HIGHLY NON-PORTABLE ***
P_Z = P_X + 1

I = P_Y
J = P_Z

IF (I .EQ. J) THEN
 PRINT *, 'NOT A BYTE-ADDRESSABLE MACHINE'
ELSE
 PRINT *, 'BYTE-ADDRESSABLE MACHINE'
ENDIF

END

On Cray systems, this prints the following:

Byte-addressable machine

Cray does not recommend the use of pointer arithmetic because it is not portable.

For purposes of optimization, the compiler assumes that the storage of a pointee is never overlaid on the
storage of another variable; that is, it assumes that a pointee is not associated with another variable or array.
This kind of association occurs when a Cray pointer has two pointees, or when two Cray pointers are given
the same value. Although these practices are sometimes used deliberately (such as for equivalencing arrays),
results can differ depending on whether optimization is turned on or off. Be responsible for preventing such
association. For example:

POINTER(P,B), (P,C)
REAL X, B, C
P = LOC(X)

Cray Fortran Language Extensions

 116

B = 1.0
C = 2.0
PRINT *, B

Because B and C have the same pointer, the assignment of 2.0 to C gives the same value to B; therefore, B
will print as 2.0 even though it was assigned 1.0.

As with a variable in common storage, a pointee, pointer, or argument to a LOC intrinsic function is stored in
memory before a call to an external procedure and is read out of memory at its next reference. The variable is
also stored before a RETURN or END statement of a subprogram.

Cray Character Pointer Type
If a pointee is declared as a character type, its Cray pointer is a Cray character pointer.

Restrictions for Cray pointers also apply to Cray character pointers. In addition, the following restrictions apply:

● When included in an I/O statement iolist, a Cray character pointer is treated as an integer.

● If the length of the pointee is explicitly declared (that is, not of an assumed length), any reference to that
pointee uses the explicitly declared length.

● If a pointee is declared with an assumed length (that is, as CHARACTER(*)), the length of the pointee comes
from the associated Cray character pointer.

● A Cray character pointer can be used in a relational operation only with another Cray character pointer. Such
an operation applies only to the character address and bit offset; the length field is not used.

Boolean Type
A Boolean constant represents the literal constant of a single storage unit. There are no Boolean variables or
arrays, and there is no Boolean type statement. Binary, octal, and hexadecimal constants are used to represent
Boolean values. For more information about Boolean expressions, see Expressions and Assignment.

Alternate Form of ENUM Statement
An enumeration defines the name of a group of related values and the name of each value within the group. The
Cray Fortran compiler allows the following additional form for enum_def (enumerations):

enum_def_stmt is ENUM, ,BIND(C) ::
type_alias_name

or ENUM kind_selector ::
type_alias_name

● kind_selector. If it is not specified, the compiler uses the default integer kind.

● type_alias_name is the name to assign to the group. This name is treated as a type alias name.

TYPEALIAS Statement
A TYPEALIAS statement allows another name to be defined for an intrinsic data type or user-defined data type.
Thus, the type alias and the type specification it aliases are interchangeable. Type aliases do not define a new
type.

This is the form for type aliases:

Cray Fortran Language Extensions

 117

type_alias_stmt is TYPEALIAS ::
type_alias_list

type_alias is type_alias_name =>
type_spec

This example shows how a type alias can define another name for an intrinsic type, a user-defined type, and
another type alias:

TYPEALIAS :: INTEGER_64 => INTEGER(KIND = 8), &
 TYPE_ALIAS => TYPE(USER_DERIVED_TYPE), &
 ALIAS_OF_TYPE_ALIAS => TYPE(TYPE_ALIAS)

INTEGER(KIND = 8) :: I
TYPE(INTEGER_64) :: X, Y
TYPE(TYPE_ALIAS) :: S
TYPE(ALIAS_OF_TYPE_ALIAS) :: T

A type alias or the data type it aliases can be used interchangeably. That is, explicit or implicit declarations that
use a type alias have the same effect as if the data type being aliased was used. For example, the above
declarations of I, X, and Y are the same. Also, S and T are the same.

If the type being aliased is a derived type, the type alias name can be used to declare a structure constructor for
the type.

The following are allowed as the type_spec in a TYPEALIAS statement:

● Any intrinsic type defined by the Cray Fortran compiler.

● Any type alias in the same scoping unit.

● Any derived type in the same scoping unit.

11.3 Data Object Declarations and Specifications
The Cray Fortran compiler accepts the following extensions to declarations. The maximum rank is equal to 31.
The standard requires a maximum rank of 15.

BOZ Constraints in DATA Statements
The Cray Fortran compiler permits a default real object to be initialized with a BOZ, typeless, or character (used
as Hollerith) constant in a DATA statement. BOZ constants are formatted in binary, octal, or hexadecimal. No
conversion of the BOZ value, typeless value, or character constant takes place.

The Cray Fortran compiler permits an integer object to be initialized with a BOZ, typeless, or character (used as
Hollerith) constant in a type declaration statement. The Cray Fortran compiler also allows an integer object to be
initialized with a typeless or character (used as Hollerith) constant in a DATA statement.

If the last item in the data_object_list is an array name, the value list can contain fewer values than the
number of elements in the array. Any element that is not assigned a value is undefined.

The following alternate forms of BOZ constants are supported:

Cray Fortran Language Extensions

 118

literal-constant is typeless-constant

typeless-constant is octal-typeless-constant

octal-typeless-constant is digit digit... B

or " digit digit... "O

or ' digit digit... 'O

hexadecimal-typeless-constantis X' hex-digit hex-digit... '

or X" hex-digit hex-digit... "

or ' hex-digit hex-digit... 'X

or " hex-digit hex-digit... "X

AUTOMATIC Attribute and Statement
The Cray Fortran AUTOMATIC attribute specifies stack-based storage for a variable or array. Such variables and
arrays are undefined upon entering and exiting the procedure. The following is the format for the AUTOMATIC
specification:

type, AUTOMATIC , attribute-list :: entity-list

automatic-stmt is AUTOMATIC :: entity-list

entity-list

For entity-list, specify a variable name or an array declarator. If an entity-list item is an array, it must
be declared with an explicit-shape-spec with constant bounds. If an entity-list item is a pointer, it must
be declared with a deferred-shape-spec.

If an entity-list item has the same name as the function in which it is declared, the entity-list item must
be scalar and of type integer, real, logical, complex, or double precision.

If the entity-list item is a pointer, the AUTOMATIC attribute applies to the pointer itself and not to any target
that may become associated with the pointer.

Subject to the rules governing combinations of attributes, attribute-list can contain the following:

● DIMENSION

● TARGET

● POINTER

● VOLATILE

The following entities cannot have the AUTOMATIC attribute:

● Pointers or arrays used as function results

● Dummy arguments

● Statement functions

Cray Fortran Language Extensions

 119

● Automatic array or character data objects

An entity-list item cannot have the following characteristics:

● It cannot be defined in the scoping unit of a module.

● It cannot be a common block item.

● It cannot be specified more than once within the same scoping unit.

● It cannot be initialized with a DATA statement or with a type declaration statement.

● It cannot also have the SAVE or STATIC attribute.

● It cannot be specified as a Cray pointee.

IMPLICIT Statement
Implicit
Extensions

The Cray Fortran compiler accepts the IMPLICIT AUTOMATIC or IMPLICIT STATIC syntax.
It is recommended that none of the IMPLICIT extensions be used in new code.

Storage Association of Data Objects
EQUIVALENCE
Statement
Extensions

The Cray Fortran compiler allows equivalencing of character data with noncharacter
data. The Fortran standard does not address this. It is recommended that equivalencing
is not performed in this manner, however, because alignment and padding differs across
platforms, thus rendering the code less portable.

COMMON Statement Extensions
The Cray Fortran compiler treats named common blocks and blank common blocks identically, as follows:

● Variables in blank common and variables in named common blocks can be initialized.

● Named common blocks and blank common are always saved.

● Named common blocks of the same name and blank common can be of different sizes in different scoping
units.

11.4 Expressions and Assignment

Expressions
In Fortran, calculations are specified by writing expressions. Expressions look much like algebraic formulas in
mathematics, particularly when the expressions involve calculations on numerical values.

Expressions often involve nonnumeric values, such as character strings, logical values, or structures; these also
can be considered to be formulas that involve nonnumeric quantities rather than numeric ones.

Rules for Forming Expressions
The Cray Fortran compiler supports exclusive disjunct expressions of the form:

Cray Fortran Language Extensions

 120

exclusive-disjunct-expr is exclusive-disjunct-expr
.XOR
inclusive-disjunct-expr

Intrinsic and Defined Operations
Cray supports the following intrinsic operators as extensions:

less_greater_op is .LG.

or <>

not_op is .N.

and_op is .A.

or_op is .O.

exclusive_disjunct_op is .XOR.

or .X.

The Cray Fortran less than or greater than intrinsic operation is represented by the <> operator and the .LG.
keyword. This operation is suggested by the IEEE standard for floating-point arithmetic, and the Cray Fortran
compiler supports this operator. Only values of type real can appear on either side of the <> or .LG. operators. If
the operands are not of the same kind type value, the compiler converts them to equivalent kind types. The <>
and .LG. operators perform a less-than-or-greater-than operation as specified in the IEEE standard for floating-
point arithmetic.

The Cray Fortran compiler allows abbreviations for the logical and masking operators. The
abbreviations .A., .O., .N., and .X. are synonyms for .AND., .OR., .NOT., and .XOR., respectively.

The masking of Boolean operators and their abbreviations, which are extensions to Fortran, can be redefined as
defined operators. If a masking operator is redefined, the definition overrides the intrinsic masking operator
definition. See Bitwise Logical Expressions for a list of the operators.

Intrinsic Operations
In the following table, the symbols I, R, Z, C, L, B, and P stand for the types integer, real, complex, character,
logical, Boolean, and Cray pointer, respectively. Where more than one type for x2 is given, the type of the result of
the operation is given in the same relative position in the next column. Boolean and Cray pointer types are
extensions of the Fortran standard.

Table 9. Operand Types and Results for Intrinsic Operations

Intrinsic operator Type of x1 Type of x2 Type of result

Unary +, - I, R, Z, B, P I, R, Z, I, P

Binary +, -, *, /, ** I I, R, Z, B, P I, R, Z, I, P

R I, R, Z, B R, R, Z, R

Z I, R, Z Z, Z, Z

Cray Fortran Language Extensions

 121

Intrinsic operator Type of x1 Type of x2 Type of result

B I, R, B, P I, R, B, P

P I, B, P P, P, P

(For Cray pointer, only +
and - are allowed.)

// C C C

.EQ., ==, .NE., /= I I, R, Z, B, P L, L, L, L, L

R I, R, Z, B, P L, L, L, L, L

Z I, R, Z, B, P L, L, L, L, L

B I, R, Z, B, P L, L, L, L, L

P I, R, Z, B, P L, L, L, L, L

C C L

.GT., >, .GE., >=, .LT.,
<, .LE., <=

I I, R, B, P L, L, L, L

R I, R, B L, L, L

C C L

P I, P L, L

.LG., <> R R L

.NOT. L L

I, R, B B

.AND., .OR., .EQV., .NEQ
V., .XOR.

L L L

I, R, B I, R, B B

The operators .NOT., .AND., .OR., .EQV., and .XOR. can also be used in the Cray Fortran compiler's bitwise
masking expressions; these are extensions to the Fortran standard. The result is Boolean (or typeless) and has
no kind type parameters.

Bitwise Logical Expressions
A bitwise logical expression (also called a masking expression) is an expression in which a logical operator
operates on individual bits within integer, real, Cray pointer, or Boolean operands, giving a result of type Boolean.
Each operand is treated as a single storage unit. The result is a single storage unit, which is either 32 or 64 bits
depending on the -s option specified during compilation. Boolean values and bitwise logical expressions use the
same operators but are different from logical values and expressions.

Cray Fortran Language Extensions

 122

Table 10. Cray Fortran Intrinsic Bitwise Operators and the Allowed Types of their Operands

Operator category Intrinsic operator Operand types

Bitwise masking (Boolean)
expressions

.NOT., .AND., .OR., .XOR., .EQV., .
NEQV.

Integer, real, typeless, or Cray
pointer.

Bitwise logical operators can also be written as functions; for example A .AND. B can be written as IAND(A,B)
and .NOT. A can be written as NOT(A).

Table 11. Data Types in Bitwise Logical Operations

x1 x27 Integer Real Boolean Pointer Logical Character

Integer Masking,
operation,
Boolean
result.

Masking,
operation,
Boolean
result.

Masking,
operation,
Boolean
result.

Masking,
operation,
Boolean
result.

Not valid Not valid8

Real Masking,
operation,
Boolean
result.

Masking,
operation,
Boolean
result.

Masking,
operation,
Boolean
result.

Masking,
operation,
Boolean
result.

Not valid Not valid8

Boolean Masking,
operation,
Boolean
result.

Masking,
operation,
Boolean
result.

Masking,
operation,
Boolean
result.

Masking,
operation,
Boolean
result.

Not valid Not valid8

Pointer Masking,
operation,
Boolean
result.

Masking,
operation,
Boolean
result.

Masking,
operation,
Boolean
result.

Masking,
operation,
Boolean
result.

Not valid Not valid8

Logical Not valid8 Not valid8 Not valid8 Not valid8 Logical
operation
logical results

Not valid8

Character Not valid8 Not valid8 Not valid8 Not valid8 Not valid Not valid8

Bitwise logical expressions can be combined with expressions of Boolean or other types by using arithmetic,
relational, and logical operators. Evaluation of an arithmetic or relational operator processes a bitwise logical
expression with no type conversion. Boolean data is never automatically converted to another type.

A bitwise logical expression performs the indicated logical operation separately on each bit. The interpretation of
individual bits in bitwise multiplication-exprs, summation-exprs, and general expressions is the same as

7 x1 and x2 represent operands for a logical or bitwise expression, using
operators .NOT., .AND., .OR., .XOR., .NEQV., and .EQV..

8 Indicates that if the operand is a character operand of 32 or fewer characters, the operand is treated as a
Hollerith constant and is allowed.

Cray Fortran Language Extensions

 123

for logical expressions. The results of binary 1 and 0 correspond to the logical results TRUE and FALSE,
respectively, in each of the bit positions. These values are summarized as follows:

.NOT. 1100 1100 1100 1100 1100
 =0011 .AND. 1010 .OR. 1010 .XOR. 1010 .EQV. 1010
 ---- ---- ---- ----
 1000 1110 0110 1001

Assignment
The Cray Fortran compiler supports Boolean and Cray pointer intrinsic assignments. The Cray Fortran compiler
supports type Boolean or BOZ constants in assignment statements in which the variable is of type integer or real.
The bits specified by the constant are moved into the variable with no type conversion.

Array Reference
The Cray Fortran compiler allows arrays to be referenced with fewer than the declared number of dimensions.
The subscripts specified in the array reference are used for the leftmost dimensions, and the lower bounds are
used for the rightmost subscripts that were omitted. This extension to the Fortran standard applies to both arrays
and coarrays.

When the option to note deviations from the Fortran standard is in effect (-en), this type of an array reference will
cause compilation errors.

11.5 Execution Control

STOP Code Extensions
The STOP statement terminates the program whenever and wherever it is executed. The STOP statement is
defined as follows:

stop-stmt is STOP stop_code

stop-code is scalar_char_constant

or digit ...

The character constant or list of digits identifying the STOP statement is optional and is called a stop-code.
When the stop-code is a string of digits, leading zeros are not significant; 10 and 010 are the same stop-code.
The Cray Fortran compiler accepts 1 to 80 digits; the standard accepts up to 5 digits.

When the stop code is a string of digits, only the least-significant 8 bits of the integer value is used as the process
exit status. When the stop code is of type character or does not appear, the value zero is the process exit status.

In either case, the stop code is accessible following program termination. The Cray Fortran compiler sends it to
the standard error file (stderr). The following are examples of STOP statements:

STOP
STOP 'Error #823'
STOP 20

Cray Fortran Language Extensions

 124

11.6 Input/Output Statements
The Fortran standard does not specifically describe the implementation of I/O processing. This section provides
information about processor-dependent areas and the implementation of the support for I/O.

File Connection
OPEN
Statement

The OPEN statement specifies the connection properties between the file and the unit. The
Values for Keyword Specifier Variables in an OPEN Statement table indicates the keyword
specifiers in an OPEN statement that are Cray Fortran compiler extensions.

Table 12. Values for Keyword Specifier Variables in an OPEN Statement

Specifier Possible Values Default Value

FORM SYSTEM Unformatted with no records marks

CONVERT LITTLE_ENDIAN, BIG_ENDIAN,
CRAY, NATIVE

NATIVE

The FORM specifier has the following format:FORM= scalar-char-expr

A file opened with FORM=SYSTEM is unformatted and has no record marks.

The CONVERT specifier converts unformatted data between BIG- and LITTLE-ENDIAN representation. Overrides
any numeric conversion specified via assign or by compilation option.

The CONVERT specifier has the following format:CONVERT="format-specifier"format-specifier
describes the format of the file being opened and it only applies for that single file. It may be one of the following
strings:

● LITTLE_ENDIAN

● Specifies little endian integer data and IEEE floating-point data. Has no effect except to override any numeric
conversion specified via assign statement or by compilation option.

● BIG_ENDIAN

● Specifies big endian integer data and IEEE floating-point data. This has the same effect as specifying -
hbyteswapio on the compilation, but it applies on a per file basis. The assign -Nswap_endian f:filename
command also converts the named file to BIG_ENDIAN format.

● CRAY

● Indicates BIG_ENDIAN integer data and Cray floating point data of size REAL(8) or COMPLEX(8). It has the
same effect as the assign command: assign -Ncray f:filename.

● NATIVE

● Default. Same effect as "LITTLE_ENDIAN".

Cray Fortran Language Extensions

 125

11.7 Error, End-of-record, and End-of-file Conditions

End-of-file Condition and the END-specifier
Multiple End-
of-file Records

The file position prior to data transfer depends on the method of access: sequential or direct.
Although the Fortran standard does not allow files that contain an end-of-file to be positioned
after the end-of-file prior to data transfer, the Cray Fortran compiler permits more than one
end-of-file for some file structures.

11.8 Input/Output Editing

Data Edit Descriptors

Integer Editing
The Cray Fortran compiler allows w to be zero for the G edit descriptor, and it permits w to be omitted for the I, B,
O, Z, or G edit descriptors.

The Cray Fortran compiler allows signed binary, octal, or hexadecimal values as input.

If the minimum digits (m) field is specified, the default field width is increased, if necessary, to allow for that
minimum width.

Real Editing
The Cray Fortran compiler allows the use of B, O, and Z edit descriptors of REAL data items. The Cray Fortran
compiler accepts the Dw.dEe edit descriptor.

The Cray Fortran compiler accepts the ZERO_WIDTH_PRECISION environment variable, which can be used to
modify the default size of the width w field. This environment variable is examined only upon program startup.
Changing the value of the environment variable during program execution has no effect. For more information
about the ZERO_WIDTH_PRECISION environment, see ZERO_WIDTH_PRECISION.

The Cray Fortran compiler allows w to be zero or omitted for the D, E, EN, ES, or G edit descriptors.

The Cray Fortran compiler does not restrict the use of Ew.d and Dw.d to an exponent less than or equal to 999.
The Ew.dEe form must be used.

Table 13. Default Fractional and Exponent Digits

Data Size and
Representation

w d e

4-byte (32-bit) IEEE 17 9 2

8-byte (64-bit) IEEE 26 17 3

Cray Fortran Language Extensions

 126

Logical Editing
The Cray Fortran compiler allows w to be zero or omitted on the L or G edit descriptors.

Character Editing
The Cray Fortran compiler allows w to be zero or omitted on the G edit descriptor.

Control Edit Descriptors

Q Editing
The Cray Fortran supports the Q edit descriptor. The Q edit descriptor is used to determine the number of
characters remaining in the input record. It has the following format:Q

When a Q edit descriptor is encountered during execution of an input statement, the corresponding input list item
must be of type integer. Interpretation of the Q edit descriptor causes the input list item to be defined with a value
that represents the number of characters remaining to be read in the formatted record.

For example, if c is the character position within the current record of the next character to be read, and the
record consists of n characters, then the item is defined with the following value MAX(n-c+1,0).

If no characters have yet been read, then the item is defined as n (the length of the record). If all the characters of
the record have been read (c>n), then the item is defined as zero.

The Q edit descriptor must not be encountered during the execution of an output statement.

The following example code uses Q on input:

INTEGER N
CHARACTER LINE * 80
READ (*, FMT='(Q,A)') N, LINE(1:N)

List-directed Formatting

List-directed Input
Input values are generally accepted as list-directed input if they are the same as those required for explicit
formatting with an edit descriptor. The exceptions are as follows:

● When the data list item is of type integer, the constant must be of a form suitable for the I edit descriptor. The
Cray Fortran compiler permits binary, octal, and hexadecimal based values in a list-directed input record to
correspond to I edit descriptors.

Namelist Formatting

Namelist Extensions
The Cray Fortran compiler has extended the namelist feature. The following additional rules govern namelist
processing:

● An ampersand (&) or dollar sign ($) can precede the namelist group name or terminate namelist group input.
If an ampersand precedes the namelist group name, either the slash (/) or the ampersand must terminate the
namelist group input. If the dollar sign precedes the namelist group name, either the slash or the dollar sign
must terminate the namelist group input.

Cray Fortran Language Extensions

 127

● Octal and hexadecimal constants are allowed as input to integer and single-precision real namelist group
items. An error is generated if octal and hexadecimal constants are specified as input to character, complex,
or double-precision real namelist group items.

● Octal constants must be of the following form:

○ O"123"

○ O'123'

○ o"123"

○ o'123'

● Hexadecimal constants must be of the following form:

○ Z"1a3"

○ Z'1a3'

○ z"1a3"

○ z'1a3'

I/O Editing
Usually, data is stored in memory as the values of variables in some binary form. On the other hand, formatted
data records in a file consist of characters. Thus, when data is read from a formatted record, it must be converted
from characters to the internal representation. When data is written to a formatted record, it must be converted
from the internal representation into a string of characters.

The tables below list the control and data edit descriptor extensions supported by the Cray Fortran compiler and
provide a brief description of each.

Table 14. Summary of Control Edit Descriptors

Descriptor Description

$ or \ Suppress carriage control

Table 15. Summary of Data Edit Descriptors

Descriptor Description

Q Return number of characters left in record

The following tables show the use of the Cray Fortran compiler's edit descriptors with all intrinsic data types. In
these tables:

● NA indicates invalid usage that is not allowed.

● I,O indicates that usage is allowed for both input and output.

● I indicates legal usage for input only.

● NA indicates invalid usage that is not allowed.

● I,O indicates that usage is allowed for both input and output.

● I indicates legal usage for input only.

Cray Fortran Language Extensions

 128

Table 16. Default Compatibility Between I/O List Data Types and Data Edit Descriptors

Data
type
s

Q Z R O L I G F ES EN E D B A

Integ
er

I I,O I,O I,O NA I,O I,O NA NA NA NA NA I,O I,O

Real NA I,O I,O I,O NA NA I,O I,O I,O I,O I,O I,O I,O I,O

Com
plex

NA I,O I,O I,O NA NA I,O I,O I,O I,O I,O I,O I,O I,O

Logic
al

NA I,O I,O I,O I,O NA I,O NA NA NA NA NA I,O I,O

Char
acter

NA NA NA NA NA NA I,O NA NA NA NA NA NA I,O

The table below, RELAXED Compatibility Between Data Types and Data Edit Descriptors shows the
restrictions for the various data types that are allowed when the FORMAT_TYPE_CHECKING environment
variable is set to RELAXED. Not all data edit descriptors support all data sizes; for example, a 16-byte real
variable with an I edit descriptor cannot be read/write.

Table 17. RELAXED Compatibility Between Data Types and Data Edit Descriptors

Data
type
s

Q Z R O L I G F ES EN E D B A

Integ
er

I I,O I,O I,O I,O I,O I,O I,O I,O I,O I,O NA I,O I,O

Real NA I,O I,O I,O I,O I,O I,O I,O I,O I,O I,O I,O I,O I,O

Com
plex

NA I,O I,O I,O NA NA I,O I,O I,O I,O I,O I,O I,O I,O

Logic
al

NA I,O I,O I,O I,O I,O I,O I,O I,O I,O I,O NA I,O I,O

Char
acter

NA NA NA NA NA NA I,O NA NA NA NA NA NA I,O

STRICT77 Compatibility Between Data Types and Data Edit Descriptors shows the restrictions for the various
data types that are allowed when the FORMAT_TYPE_CHECKING environment variable is set to STRICT77.

Cray Fortran Language Extensions

 129

Table 18. STRICT77 Compatibility Between Data Types and Data Edit Descriptors

Data
type
s

Q Z R O L I G F ES EN E D B A

Integ
er

NA I,O NA I,O NA I,O NA NA NA NA NA NA I,O NA

Real NA NA NA NA NA NA I,O I,O NA NA I,O I,O NA NA

Com
plex

NA NA NA NA NA NA I,O I,O NA NA I,O I,O NA NA

Logic
al

NA NA NA NA I,O NA NA NA NA NA NA NA NA NA

Char
acter

NA NA NA NA NA NA NA NA NA NA NA NA NA I,O

STRICT90 and STRICT95 Compatibility Between Data Types and Data Edit Descriptors shows the
restrictions for the various data types that are allowed when the FORMAT_TYPE_CHECKING environment
variable is set to STRICT90 or STRICT95.

Table 19. STRICT90 or STRICT95 Compatibility Between Data Types and Data Edit Descriptors

Data
type
s

Q Z R O L I G F ES EN E D B A

Integ
er

NA I,O NA I,O NA I,O I,O NA NA NA NA NA I,O NA

Real NA NA NA NA NA NA I,O I,O I,O I,O I,O I,O NA NA

Com
plex

NA NA NA NA NA NA I,O I,O I,O I,O I,O I,O NA NA

Logic
al

NA NA NA NA I,O NA I,O NA NA NA NA NA NA NA

Char
acter

NA NA NA NA NA NA I,O NA NA NA NA NA NA I,O

Cray Fortran Language Extensions

 130

11.9 Program Units

Main Program
Program
Statement
Extension

The Cray Fortran compiler supports the use of a parenthesized list of args at the end of a
program statement. The compiler ignores any args specified after program-name.

Block Data Program Units
Block Data Program Unit
Extension

The Cray Fortran compiler permits named common blocks to appear in more
than one block data program unit.

11.10 Procedures

Procedure Interface
Interface
Duplication

The Cray Fortran compiler allows specification of an interface body for the program unit
being compiled if the interface body matches the program unit definition.

Procedure Definition
Recursive Function
Extension

The Cray Fortran compiler allows direct recursion for functions that do not specify a
RESULT clause on the FUNCTION statement.

Empty CONTAINS
Sections

The Cray Fortran compiler allows a CONTAINS statement with no internal or module
procedure following.

11.11 Intrinsic Procedures and Modules

Intrinsic Procedures
The Cray Fortran compiler has implemented intrinsic procedures in addition to the ones required by the standard.
These procedures have the status of intrinsic procedures, but programs that use them may not be portable. It is
recommended that such procedures be declared INTRINSIC to allow other processors to diagnose whether or not
they are intrinsic for those processors.

The nonstandard intrinsic procedures supported by the Cray Fortran compiler are summarized in the following list.
For more information about a particular procedure, see its man page.

ACOSD Arccosine, value in degrees

AMO_AADD Atomic memory add

AMO_AADDF Atomic memory add, return new

Cray Fortran Language Extensions

 131

AMO_AFADD Atomic memory add, return old

AMO_AAX Atomic memory AND and XOR

AMO_AFAX Atomic memory AND and XOR, return old

AMO_AANDF Atomic memory AND, return new

AMO_AFAND Atomic memory AND, return old

AMO_ANANDF Atomic memory NAND, return new

AMO_AFNAND Atomic memory NAND, return old

AMO_AORF Atomic memory OR, return new

AMO_AFOR Atomic memory OR, return old

AMO_AXORF Atomic memory XOR, return new

AMO_AFXOR Atomic memory XOR, return old

AMO_ACSWAP Atomic memory swap, return old

AMO_ASWAP Atomic memory swap, return new

AMO_AFLUSH Atomic memory flush, flush local cache to the global address space for a particular
address on a Cray XE or XK system.

ASIND Arcsine, value in degrees

ATAND Arctangent, value in degrees

ATAND2 Arctangent, value in degrees

CO_BCAST Broadcast a coarray to all images in an application.

CO_SUM Sum of corresponding elements on all images in a coarray application

CO_MIN, CO_MAX Maximum or minimum value of corresponding elements on all images in a coarray
application

COSD Cosine, argument in degrees

COT Cotangent

EXIT Program termination

FREE Free Cray pointee memory

GET_BORROW_S@ Get scalar borrow bit

GSYNC Complete outstanding memory references

IBCHNG Reverse bit within a word

ILEN Length in bits of an integer

INT_MULT_UPPER Upper bits of integer product

LOC Address of argument

MALLOC Allocate Cray pointee memory

MASK Creates a bit mask in a word

Cray Fortran Language Extensions

 132

SET_BORROW_S@ Set scalar borrow bits

SET_CARRY_S@ Set scalar carry bits

SIND Sin, argument in degrees

SIZEOF Size of argument in bytes

SUB_BORROW_S@ Subtract scalar with borrow

TAND Tangent, argument in degrees

CO_BCAST, CO_SUM, CO_MIN, and CO_MAX are collective intrinsic subroutines, which are extensions of the
Fortran 2008 standard. Support for teams is deferred. For specific information about these routines, see the
co_bcast(3i), co_max(3i), co_sum(3i) man pages.

Many intrinsic procedures have both a vector and a scalar version. If a vector version of an intrinsic procedure
exists, and the intrinsic is called within a vectorizable loop, the compiler uses the vector version of the intrinsic.
For information about which intrinsic procedures vectorize, see the intro_intrin(3i) man page.

For more information about the atomic memory intrinsic procedures see the amo(3i) man page.

11.12 Exceptions and IEEE Arithmetic

The Exceptions
The intrinsic module IEEE_EXCEPTIONS supplied with the Cray Fortran compiler contains three named
constants in addition to those specified by the standard. These are of type IEEE_STATUS_TYPE and can be
used as arguments to the IEEE_SET_STATUS subroutine. Their definitions correspond to common combinations
of settings and allow for simple and fast changes to the IEEE mode settings. The constants are:

Table 20. Cray Fortran IEEE Intrinsic Module Extensions

Name Effect of CALL IEEE_SET_STATUS (Name)

ieee_cri_nostop_mode ● Clears all currently set exception flags

● Disables halting for all exceptions

● Enables setting of all exception flags

● Sets rounding mode to round_to_nearest

ieee_cri_default_mode ● Clears all currently set exception flags

● Enables halting for overflow, divide_by_zero, and
invalid

● Disables halting for underflow and inexact

● Enables setting of all exception flags

● Sets rounding mode to round_to_nearest

Cray Fortran Language Extensions

 133

11.13 Coarrays
The Cray Fortran compiler implements coarrays as a mechanism for data exchange in parallel programs.

Data passing has proven itself to be an effective method for programming single-program-multiple-data (SPMD)
parallel computation. Its chief advantage over message passing is lower latency for data transfers, which leads to
better scalability of parallel applications. coarrays are a syntactic extension to the Fortran Language that offers a
method for programming data passing.

Data passing can also be accomplished by using the shared memory (SHMEM) library routines. Using SHMEM,
the program transfers data from an object on one processing element to an object on another via subroutine calls.
This technique is often referred to as one-sided communication.

Coarrays provide an alternative syntax for specifying these transfers. With coarrays, the concept of a processing
element is replaced by the concept of an image. When data objects are declared as coarrays, the corresponding
coarrays on different images can be referenced or defined in a fashion similar to the way in which arrays are
referenced or defined in Fortran. This is done by adding additional dimensions, or codimensions, within brackets
([]) to an object's declarations and references. These extra dimensions express the image upon which the object
resides.

Coarrays offer the following advantages over SHMEM:

● Coarrays are syntax-based, so programs that use them can be analyzed and optimized by the compiler. This
offers greater opportunity for hiding data transfer latency.

● Coarray syntax can eliminate the need to create and copy data to local temporary arrays.

● Coarrays express data transfer naturally through the syntax of the language, making the code more readable
and maintainable.

● The unique bracket syntax allows for easy scanning and identification of communication in a program.

Consider the following SHMEM code fragment from a finite differencing algorithm:

CALL SHMEM_REAL_GET(T1, U, NROW, LEFT)
CALL SHMEM_REAL_GET(T2, U, NROW, RIGHT)
NU(1:NROW) = NU(1:NROW) + T1(1:NROW) + T2(1:NROW)

Coarrays can be used to express this fragment simply as:

REAL U(NROW)[*]
...
NU(1:NROW) = NU(1:NROW) + U(1:NROW)[LEFT] + U(1:NROW)[RIGHT]

Notice that the resulting code is more concise and easier to read. The compiler copies to local temporary
objects automatically.

Coarrays can interoperate with the other message passing and data passing models. This interoperability
allows for the introduction of coarrays gradually into codes that presently use the Message Passing Interface
(MPI) or SHMEM.

For more information about coarrays, see ISO/IEC JTC1/SC22/WG5 N1824, Coarrays in the Next Fortran
Standard, by John Reid. This document can be accessed at the following location: ftp://ftp.nag.co.uk/
sc22wg5/N1801-N1850/N1824.pdf

Cray Fortran Language Extensions

 134

ftp://ftp.nag.co.uk/sc22wg5/N1801-N1850/N1824.pdf
ftp://ftp.nag.co.uk/sc22wg5/N1801-N1850/N1824.pdf

11.14 Compile and Execute Programs Containing Coarrays
There are various commands, tools, and products available in the programming environment to use for compiling
and executing programs containing coarrays.

ftn and aprun Options Affecting Coarrays
The compiler recognizes coarray syntax by default. The -h nocaf disables coarray syntax recognition.

Upon execution of an a.out file that has been compiled and linked with the -h caf option, an image is created
and executed on every processing element assigned to the job. Images 1 through NUM_IMAGES are assigned to
processing elements 0 through N$PES-1, consecutively. The functions THIS_IMAGE() and NUM_IMAGES() may
be used to retrieve the image number of the current image, or the total number of images at run time, respectively.

Set the number of processing elements assigned to a job at compile time by specifying the -X option on the ftn
command. The number of processing elements can also be set at run time by executing the a.out file by using
the aprun command with the -n option specified. If mixed -X values are used when compiling and linking
different object files, or the number of PEs specified at run time differs from that specified when compiling and
linking, a run time error will be received.

Bounds checking is performed by specifying the -Rb option on the ftn command line. This feature is not
implemented for codimensions of coarrays.

For more information about the ftn and aprun commands, see the ftn(1) and aprun(1) man pages.

Interoperate with Other Message Passing and Data Passing Models
Coarrays can interoperate with all other message and data passing models. This allows for the introduction of
coarrays into existing application codes incrementally. However, while it may work in some cases, mixing
language-based PGAS with SHMEM is not officially supported.

These models are implemented through procedure calls, so the language interaction between coarrays and these
models is well defined.

MPI and SHMEM generally use processing element numbers, which start at zero, but the coarray model generally
deals with image numbers, which start at one.

Coarrays are symmetric for the purposes of SHMEM programming. Pointers in coarrays of derived type, however,
may not necessarily point to symmetric data.

For more information about the other message passing and data passing models, see the following man pages:

● intro_mpi(3)
● intro_shmem(3)

Optimize Programs with Coarrays
Programs containing coarrays benefit from all the usual steps taken to improve run time performance of code that
runs on a single image.

Cray Fortran Language Extensions

 135

11.15 Submodules
The Cray Fortran Compiler fully supports submodules, which extend specifications and definitions to other
program units by use association and stand in a tree-like relationship to other Fortran modules and submodules.
There are no known differences between the Cray implementation and the Fortran 2008 standard.

Cray Fortran Language Extensions

 136

12 Cray Fortran Deferred Implementation and Optional
Features

ISO_10646 Character Set
The Fortran 2003 features related to supporting the ISO_10646 character set are not supported. This includes
declarations, constants, and operations on variables of character(kind=4) and I/O operations. Support for this
feature is optional in Fortran 2008.

Restrictions on Unlimited Polymorphic Variables
Unlimited polymorphic variables whose dynamic types are integer(1), integer(2), logical(1), or logical(2) are not
supported, unless the -d h is specified to disable packed storage for short integers and logicals.

Cray Fortran Deferred Implementation and Optional Features

 137

13 Cray Fortran Implementation Specifics
The Fortran standard specifies the rules for writing a standard conforming Fortran program. Many of the details of
how such a program is compiled and executed are intentionally not specified or are explicitly specified as being
processor-dependent. This chapter describes the implementation used by the Cray Fortran compiler. Included are
descriptions of the internal representations used for data objects and the values of processor-dependent
language parameters.

Companion Processor
For the purpose of C interoperability, the Fortran standard refers to a companion processor. The companion
processor for the Cray Fortran compiler is the Cray C compiler.

INCLUDE Line
There is no limit to the nesting level for INCLUDE lines. The character literal constant in an INCLUDE line is
interpreted as the name of the file to be included. This case-sensitive name may be prefixed with additional
characters based on the -I compiler command line option.

INTEGER Kinds and Values
INTEGER kind type parameters of 1, 2, 4, and 8 are supported. The default kind type parameter is 4 unless the -
s default64 or -s integer64 command line option is specified, in which case the default kind type
parameter is 8. The interpretation of kinds 1 and 2 depend on whether the -d h command line option is specified.
Integer values are represented as two's complement binary values.

REAL Kinds and Values
REAL kind type parameters of 4, 8, and 16 are supported. The default kind type parameter is 4 unless the -s
default64 or -s real64 command lines option is specified, in which case, the default kind type parameter is
8. Real values are represented in the format specified by the IEEE 754 standard, with kinds 4 and 8
corresponding to the 32 and 64 bit IEEE representations.

DOUBLE PRECISION Kinds and Values
The DOUBLE PRECISION type is an alternate specification of a REAL type. The kind type parameter of that
REAL type is twice the value of the kind type parameter for default REAL unless the -sdefault64 or -sreal64
command line options are specified, in which case, the kind type parameter for DOUBLE PRECISION and default
REAL are the same, and REAL constants with a D exponent are treated as if the D were an E. Note that if the -
sdefault64 or -sreal64 options are specified, the compiler is not standard conforming.

Cray Fortran Implementation Specifics

 138

LOGICAL Kinds and Values
LOGICAL kind type parameters of 1, 2, 4, and 8 are supported. The default kind type parameter is 4 unless the -
s default64 or -s integer64 command line option is specified, in which case, the default kind type
parameter is 8. The interpretation of kinds 1 and 2 depend on whether the -d h command line option is specified.
Logical values are represented by a bit sequence in which the low order bit is set to 1 for the value .true. and to 0
for .false., and the other bits in the representation are set to 0.

CHARACTER Kinds and Values
The CHARACTER kind type parameter of 1 is supported. The default kind type parameter is 1. Character values
are represented using the 8-bit ASCII character encoding.

Cray Pointers
Cray pointers are 64-bit objects.

ENUM Kind
An enumerator that specifies the BIND(C) attribute creates values with a kind type parameter of 4.

Storage Issues
This section describes how the Cray Fortran compiler uses storage, including how this compiler accommodates
programs that use overindexing of blank common.

Storage Units and Sequences
The size of the numeric storage units is 32 bits, unless the -s default64 option is specified, in which case the
numeric storage unit is 64 bits. If the -s real64 or -s integer64 option is specified alone, or the -dp is
specified in addition to -s default64 or -s real64, the relative sizes of the storage assigned for default
intrinsic types do not conform to the standard. In this case, storage sequence associations involving variables
declared with default intrinsic noncharacter types may be invalid and should be avoided.

Static and Stack Storage
The Cray Fortran compiler allocates variables to storage according to the following criteria:

● Variables in common blocks are always allocated in the order in which they appear in COMMON statements.

● Data in modules are statically allocated.

● User variables that are defined or referenced in a program unit, and that also appear in SAVE or DATA
statements, are allocated to static storage, but not necessarily in the order shown in the source program.

● Other referenced user variables are assigned to the stack. If -ev is specified on the Cray Fortran compiler
command line, referenced variables are allocated to static storage. This allocation does not necessarily
depend on the order in which the variables appear in the source program.

● Compiler-generated variables are assigned to a register or to memory (to the stack or heap), depending on
how the variable is used. Compiler-generated variables include DO-loop trip counts, dummy argument
addresses, temporaries used in expression evaluation, argument lists, and variables storing adjustable
dimension bounds at entries.

Cray Fortran Implementation Specifics

 139

● Automatic objects may be allocated to either the stack or to the heap, depending on how much stack space is
available when the objects are allocated.

● Heap or stack allocation can be used for TASK COMMON variables and some compiler-generated temporary
data such as automatic arrays and array temporaries.

● Unsaved variables may be assigned to a register by optimization and not allocated storage.

● Unreferenced user variables not appearing in COMMON statements are not allocated storage.

Dynamic Memory Allocation
Many FORTRAN 77 programs contain a memory allocation scheme that expands an array in a common block
located in central memory at the end of the program. This practice of expanding a blank common block or
expanding a dynamic common block (sometimes referred to as overindexing) causes conflicts between user
management of memory and the dynamic memory requirements of CLE libraries. It is recommended that
programs are modified rather than expand blank common blocks, particularly when migrating from other
environments.

The image below shows the structure of a program under the CLE operating systems in relation to expanding a
blank common block. In both figures, the user area includes code, data and common blocks.

Figure 1. Memory Use

Finalization
A finalizable object in a module is not finalized in the event that there is no longer any active procedure
referencing the module.

Cray Fortran Implementation Specifics

 140

A finalizable object that is allocated via pointer allocation is not finalized in the event that it later becomes
unreachable due to all pointers to that object having their pointer association status changed.

ALLOCATE Error Status
If an error occurs during the execution of an ALLOCATE statement with a stat= specifier, subsequent items in the
allocation list are not allocated.

DEALLOCATE Error Status
If an error occurs during the execution of a DEALLOCATE statement with a stat= specifier, subsequent items in
the deallocation list are not deallocated.

ALLOCATABLE Module Variable Status
An unsaved allocatable module variable remains allocated if it is allocated when the execution of an END or
RETURN statement results in no active program unit having access to the module.

Kind of a Logical Expression
For an expression such as x1 op x2 where op is a logical intrinsic binary operator and the operands are of type
logical with different kind type parameters, the kind type parameter of the result is the larger kind type parameter
of the operands.

STOP Code Availability
If a STOP code is specified in a STOP statement, its value is output to stderr when the STOP statement is
executed.

See Execution Control for additional details.

Stream File Record Structure Position
A formatted file written with stream access may be later read as a record file. In that case, embedded newline
characters (char(10)) indicate the end of a record and the terminating newline character is not considered part of
the record.

The file storage unit for a formatted stream file is a byte. The position is the ordinal byte number in the file; the first
byte is position 1. Positions corresponding to newline characters (char(10)) that were inserted by the I/O library as
part of record output do not correspond to positions of user-written data.

File Unit Numbers
The values of INPUT_UNIT, OUTPUT_UNIT, and ERROR_UNIT defined in the ISO_Fortran_env module are
100, 101, and 102, respectively. These three unit numbers are reserved and may not be used for other purposes.
The files connected to these units are the same files used by the companion C processor for standard input
(stdin), output (stdout), and error (stderr). An asterisk (*) specified as the unit for a READ statement specifies unit
100. An asterisk specified as the unit for a WRITE statement, and the unit for PRINT statements is unit 101. All
positive default integer values are available for use as unit numbers.

Cray Fortran Implementation Specifics

 141

OPEN Specifiers
If the ACTION= specifier is omitted from an OPEN statement, the default value is determined by the protections
associated with the file. If both reading and writing are permitted, the default value is READWRITE.

If the ENCODING= specifier is omitted or specified as DEFAULT in an OPEN statement for a formatted file, the
encoding used is ASCII.

The case of the name specified in a FILE= specifier in an OPEN statement is significant.

If the FILE= specifier is omitted, fort. is prepended to the unit number.

If the RECL= specifier is omitted from an OPEN statement for a sequential access file, the default value for the
maximum record length is 32767 (2**15-1).

If the file is connected for unformatted I/O, the length is measured in 8-bit bytes.

The FORM= specifier may also be SYSTEM for unformatted files.

If the ROUND= specifier is omitted from an OPEN statement, the default value is NEAREST. Specifying a value
of PROCESSOR_DEFINED is equivalent to specifying NEAREST.

If the STATUS= specifier is omitted or specified as UNKNOWN in an OPEN statement, the specification is
equivalent to OLD if the file exists, otherwise, it is equivalent to NEW. If STATUS="SCRATCH" is specified the file
is placed in the directory specified by the TMPDIR environment variable. If TMPDIR is not set, or the file cannot be
created in the specified directory for some other reason, the file is placed in the /tmp directory. If /tmp does not
exist, or cannot be accessed, the program aborts.

FLUSH Statement
Execution of a FLUSH statement causes memory resident buffers to be flushed to the physical file. Output to the
unit specified by ERROR_UNIT in the ISO_Fortran_env module is never buffered; execution of FLUSH on that
unit has no effect.

Asynchronous I/O
The ASYNCHRONOUS= specifier may be set to YES to allow asynchronous I/O for a unit or file.

Asynchronous I/O is used if the FFIO layer attached to the file provides asynchronous access.

REAL I/O of an IEEE NaN
An IEEE NaN may be used as an I/O value for the F, E, D, or G edit descriptor or for list-directed or namelist I/O.

Input of an IEEE NaN
The form of NaN is an optional sign followed by the string 'NAN' optionally followed by a hexadecimal digit string
enclosed in parentheses. The input is case insensitive. Some examples are:

NaN - quiet NaN
nAN() - quiet NaN
-nan(ffffffff) - quiet NaN
NAn(7f800001) - signalling NaN
NaN(ffc00001) - quiet NaN
NaN(ff800001) - signalling NaN

The internal value for the NaN becomes a quiet NaN if the hexadecimal string is not present or is not a valid NaN.

Cray Fortran Implementation Specifics

 142

A '+' or '-' preceding the NaN on input is used as the high order bit of the corresponding READ input list item. An
explicit sign overrides the sign bit from the hexadecimal string. The internal value becomes the hexadecimal string
if it represents an IEEE NaN in the internal data type. Otherwise, the form of the internal value is undefined.

Output of an IEEE NaN
The form of an IEEE NaN for the F, E, D, or G edit descriptor or for list-directed or namelist output is:

● If the field width w is absent, zero, or greater than (5 + 1/4 of the size of the internal value in bits), the output
consists of the string 'NaN' followed by the hexadecimal representation of the internal value within a set of
parentheses. An example of the output field is:

NaN(7fc00000)

● If the field width w is at least 3 but less than (5 + 1/4 of the size of the internal value in bits), the string 'NaN'
will be right-justified in the field with blank fill on the left.

● If the field width w is 1 or 2, the field is filled with asterisks.

The output field has no '+' or '-'; the sign is contained in the hexadecimal string.

To get the same internal value for a NaN, write it with a list-directed write statement and read it with a list-directed
read statement.

To write and then read the same NaN, the field width w in D, E, F, or G must be at least the number of
hexadecimal digits of the internal datum plus 5.

REAL(4): w >= 13
REAL(8): w >= 21
REAL(16): w >= 37

List-directed and NAMELIST Output Default Formats
The length of the output value in NAMELIST and list-directed output depends on the value being written. Blanks
and unnecessary trailing zeroes are removed unless the -w option to the assign command is specified, which
turns off this compression.

By default, full-precision printing is assumed unless a precision is specified by the LISTIO_PRECISION
environment variable (for more information about the LISTIO_PRECISION environment variable, see
LISTIO_PRECISION).

The form of list-directed and NAMELIST output can be changed by using the assign command with one of the
following options.

Table 21. List-directed and NAMELIST Assign Environment Options

assign Option Effect

-S Suppress comma-delimited output; use blank spaces
instead

-W Disable compression of floating-point values

-y Disable the repeat-count form; write as many copies of
the value as needed

Cray Fortran Implementation Specifics

 143

assign Option Effect

-U Set all three of the above

For example, consider this code:

integer(4), dimension(5) :: ia
real(4), dimension(5) :: ra
ia = 102
ra = 200.10
NAMELIST/TNAMEL/ia,ra
write(6,TNAMEL)
print *, ' ia=',ia
print *, ' ra=',ra
print *, iarray, rarray
end

When compiled and executed with the default settings, it produces the following output:

&TNAMEL RA = 2*200.100006, IA = 2*102
 ia = 2*102
 ra = 2*200.100006
2*102, 2*200.100006

However, if the FILENV environment variable is set to a file and uses the assign -U command to change the
output behavior, as shown below:

% setenv FILENV ASGTMP
% assign -U on g:sf

The same code now produces the following output:

&TNAMEL RA = 200.1000 200.1000 IA = 102
102 /
 ia = 102 102
 ra = 200.1000 200.1000
 102 102 200.1000 200.1000

For more information about the assign command and Assign Environment, see Enhanced I/O: Using the assign
Environment.

Random Number Generator
A multiplicative congruential generator with period 2**46 is used to produce the output of the RANDOM_NUMBER
intrinsic subroutine. The seed array contains one 64-bit integer value.

Timing Intrinsics
A call to the SYSTEM_CLOCK intrinsic subroutine with the COUNT argument present translates into the inline
instructions that directly access the hardware clock register. See the description of the -e s and -d s command
line options for information about the values returned for the count and count rate. For fine-grained timing, Cray
recommends using a 64-bit COUNT argument.

Cray Fortran Implementation Specifics

 144

The CPU_TIME subroutine obtains the value of its argument from the getrusage system call. Its execution time
is significantly longer than for the SYSTEM_CLOCK routine, but the values returned are closer to those used by
system accounting utilities.

IEEE Intrinsic Modules
The IEEE intrinsics modules IEEE_EXCEPTIONS, IEEE_ARITHMETIC, and IEEE_FEATURES are supplied.
Denormal numbers are not supported on Cray hardware. The IEEE_SUPPORT_DENORMAL inquiry function
returns .false. for all kinds of arguments.

At the start of program execution, all floating point exception traps are disabled.

Cray Fortran Implementation Specifics

 145

14 Enhanced I/O: Using the assign Environment
Fortran programs often need the ability to alter details of a file connection, such as device residency, an
alternative file name, a file space allocation scheme or structure, or data conversion properties. These file
connection details taken together comprise the assign environment, and they can be modified by using the
assign command and assign library interface.

The assign environment can also be accessed from C/C++ by using the ffassign library interface. For more
information, see the assign(1), assign(3f), and ffassign(3c) man pages.

14.1 Understand the assign Environment
The assign command information is stored in the assign environment file, .assign, or in a shell environment
variable. To begin using the assign environment to control a program's I/O behavior, follow these steps.

Set the FILENV environment variable to the desired path.

set FILENV environment-file

Run the assign command to define the current assign environment.

assign arguments assign-object

For example:

assign -F cachea g:su

Run the program.

If not satisfied with the I/O performance observed during program execution, return to step 2, use the assign
command to adjust the assign environment, and try again.

The assign command passes information to Fortran open statements and to the ffopen routine to identify the
following elements:

● A list of numbers

● File names

● File name patterns that have attributes associated with them

● The assign object is the file name, file name pattern, unit number, or type of I/O open request to which the
assign environment applies. When the unit or file is opened from Fortran, the environment defined by the
assign command is used to establish the properties of the connection.

Enhanced I/O: Using the assign Environment

 146

Assign Objects and Open Processing
The I/O library routines apply options to a file connection for all related assign objects.

If the assign object is a unit, the application of options to the unit occurs whenever that unit is connected.

If the assign object is a file name or pattern, the application of options to the file connection occurs whenever a
matching file name is opened from a Fortran program.

When any of the library I/O routines opens a file, it uses the specified assign environment options for any assign
objects that apply to the open request. Any of the following assign objects or categories can apply to a given open
request.

Table 22. Assign Object Processing

Assign-object Applies To

g:all All open requests

g:su Open sequential unformatted

g:du Open direct unformatted

g:sf Open sequential formatted

g:df Open direct formatted

g_ff ffopen

u:unit-number Open unit-number

p:pattern When a file whose name matches pattern is opened.
The assign environment can contain only one
p:assign-object that matches the current open file.
The exception is that the p:%pattern (which uses the
% wildcard character) is silently ignored if a more
specific pattern also matches the current file name
being opened.

f:filename Whenever file filename is opened.

Options from the assign objects in these categories are collected to create the complete set of options used for
any particular open. The options are collected in the listed order, with options collected later in the list of assign
objects overriding those collected earlier.

assign Command Syntax
Here is the syntax for the assign command:assign -I -O -a actualfile -b bs -f fortstd -m setting -s ft
-t -u bufcnt -y setting -B setting -C charcon -D fildes -F spec,specs -N numcon -R -S setting
-T setting -U setting -V -W setting -Y setting -Z setting assign-object

The following specifications cannot be used with any other options:assign -R assign-objectassign -V
assign-object

A summary of the command options follows. For details, see the assign(1) and intro_ffio(3f) man pages.

Control options:

Enhanced I/O: Using the assign Environment

 147

-I Specifies an incremental use of assign. All attributes are added to the attributes already assigned to the
current assign-object. This option and the -O option are mutually exclusive.

-O Specifies a replacement use of assign. This is the default control option. All currently existing assign
attributes for the current assign-object are replaced. This option and the -I option are mutually exclusive.

-R Removes all assign attributes for assign-object. If assign-object is not specified, all currently
assigned attributes for all assign-objects are removed.

-V Views attributes for assign-object. If assign-object is not specified, all currently assigned attributes
for all assign-objects are printed.

Attribute options:

-a actualfile The file= specifier or the actual file name.

-b bs Library buffer size in 4096-byte (512-word) blocks.

-f fortstd Specifies compatibility with a Fortran standard, where fortstd is either 2003 for the current
Cray Fortran or 95 for Cray Fortran 95. If the value 95 is set, the list-directed and namelist
output of a floating point will remain 0.E+0.

-m setting Special handling of a direct access file that will be accessed concurrently by several
processes or tasks. Special handling includes skipping the check that only one Fortran unit
be connected to a unit, suppressing file truncation to true size by the I/O buffering routines,
and ensuring that the file is not truncated by the I/O buffering routines. Enter either on or off
for setting.

-s ft File type. Enter text, cos, blocked, unblocked, u, sbin, or bin for ft. The default is text.

-t Temporary file.

-u bufcnt Buffer count. Specifies the number of buffers to be allocated for a file.

-y setting Suppresses repeat counts in list-directed output. setting can be either on or off. The
default setting is off.

-B setting Activates or suppresses the passing of the O_DIRECT flag to the open(2) system call. Enter
either on or off for setting. This is an important feature for I/O optimization; if this is on, it
enables reads and writes directly to and from the user program buffer.

-C charcon Character set conversion information. Enter ascii, or ebcdic for charcon. If the -C option is
specified, the -F option must also be specified.

-D fildes Specifies a connection to a standard file. Enter stdin, stdout, or stderr for fildes.

-F spec ,specs Flexible file I/O (FFIO) specification. See the assign(1) man page for details about allowed
values for spec and for details about hardware platform support. See the intro_ffio(3f)
man page for details about specifying the FFIO layers.

-N numcon Foreign numeric conversion specification. See the assign(1) man page for details about
allowed values for numcon and for details about hardware platform support.

-S setting Suppresses use of a comma as a separator in list-directed output. Enter either on or off for
setting. The default setting is off.

Enhanced I/O: Using the assign Environment

 148

-T setting Activates or suppresses truncation after write for sequential Fortran files. Enter either on or
off for setting.

-U setting Produces a non-UNICOS form of list-directed output. This is a global setting that sets the
value for the -y, -eS, and -W options. Enter either on or off for setting. The default setting is
off.

-W setting Suppresses compressed width in list-directed output. Enter either on or off for setting. The
default setting is off.

-Y setting Skips unmatched namelist groups in a namelist input record. Enter either on or off for
setting. The default setting is on.

-Z setting Recognizes -0.0 for IEEE floating-point systems and writes the minus sign for edit-directed,
list-directed, and namelist output. Enter either on or off for setting. The default setting is
on.

assign-object Specify either a file name or a unit number for assign-object. The assign command
associates the attributes with the file or unit specified. These attributes are used during the
processing of Fortran open statements or during implicit file opens.

Use one of the following formats for assign-object:

● f:filename

● g:io-type, where io-type can be su, sf, du, df, or ff (for example, g:ff for ffopen(3C)

● p:pattern (for example, p:file%)

● u:unit-number (for example, u:9)

● filename

When the p:pattern form is used, the % and _ wildcard characters can be used. The % matches any string
of 0 or more characters. The _ matches any single character. The % performs like the * when doing file name
matching in shells. However, the % character also matches strings of characters containing the / character.

Use the Library Routines
The assign, asnunit, asnfile, and asnrm routines can be called from a Fortran program to access and
update the assign environment. The assign routine provides an easy interface to assign processing from a
Fortran program. The asnunit and asnfile routines assign attributes to units and files, respectively. The
asnrm routine removes all entries currently in the assign environment.

The calling sequences for library routines are as follows:

call assign (cmd, ier)

call asnunit (iunit,astring,ier)

call asnfile (fname,astring,ier)

call asnrm (ier)

Where:

cmd

Enhanced I/O: Using the assign Environment

 149

Fortran character variable containing a complete assign command in the format acceptable to the pxfsystem
routine.

ier

Integer variable that is assigned the exit status on return from the library interface routine.

iunit

Integer variable or constant that contains the unit number to which attributes are assigned.

astring

Fortran character variable that contains any attribute options and option values from the assign command.
Control options -I, -O, and -R can also be passed.

fname

Character variable or constant that contains the file name to which attributes are assigned.

A status of 0 indicates normal return. A status of greater than 0 indicates a specific error status. Use the explain
command to determine the meaning of the error status.

The following calls are equivalent to the assign -s u f:file command:

call assign('assign -s u f:file',ier)
call asnfile('file','-s u',ier)

The following call is equivalent to executing the assign -I -n 2 u:99 command:

iun = 99
call asnunit(iun,'-i -n 2',ier)

The following call is equivalent to executing the assign -R command:

call asnrm(ier)

14.2 Tune File Connection Behavior

Use Alternative File Names
The -a option specifies the actual file name to which a connection is made. This option allows files to be created
in different directories without changing the FILE= specifier on an OPEN statement.

For example, consider the following assign command issued to open unit 1:

assign -a /tmp/mydir/tmpfile u:1

The program then opens unit 1 with any of the following statements:

WRITE(1) variable ! implicit open
OPEN(1) ! unnamed open
OPEN(1,FORM='FORMATTED') ! unnamed open

Enhanced I/O: Using the assign Environment

 150

Unit 1 is connected to file /tmp/mydir/tmpfile. Without the -a attribute, unit 1 would be connected to file
fort.1.

When the -a attribute is associated with a file, any Fortran open that is set to connect to the file causes a
connection to the actual file name. An assign command of the following form causes a connection to file
$FILENV/joe:

assign -a $FILENV/joe ftfile

This is true when the following statement is executed in a program:

OPEN(IUN,FILE='ftfile')

If the following assign command is issued and in effect, any Fortran INQUIRE statement whose FILE=
specification is foo refers to the file named actual instead of the file named foo for purposes of the EXISTS=,
OPENED=, or UNIT= specifiers:

assign -a actual f:foo

If the following assign command is issued and in effect, the -a attribute does not affect INQUIRE statements with
a UNIT= specifier:

assign -a actual ftfile

When the following OPEN statement is executed, INQUIRE(UNIT=n,NAME=fname) returns a value of ftfile in
fname, as if no assign had occurred:

OPEN(n,file='ftfile')

The I/O library routines use only the actual file (-a) attributes from the assign environment when processing an
INQUIRE statement. During an INQUIRE statement that contains a FILE= specifier, the I/O library searches the
assign environment for a reference to the file name that the FILE= specifier supplies. If an
assign-by-filename exists for the file name, the I/O library determines whether an actual name from the -a
option is associated with the file name. If the assign-by-filename supplied an actual name, the I/O library
uses that name to return values for the EXIST=, OPENED=, and UNIT= specifiers; otherwise, it uses the file
name. The name returned for the NAME= specifier is the file name supplied in the FILE= specifier. The actual file
name is not returned.

Specify File Structure
A file structure defines the way records are delimited and how the end-of-file is represented. The assign
command supports two mutually exclusive file structure options:

● To select a structure using an FFIO layer, use assign -F

● To select a structure explicitly, use assign -s

Using FFIO layers is more flexible than selecting structures explicitly. FFIO allows nested file structures, buffer
size specifications, and support for file structures not available through the -s option. Better I/O performance
is realized by using the -F option and FFIO layers.

The remainder of this section covers the -s option.

Enhanced I/O: Using the assign Environment

 151

Fortran sequential unformatted I/O uses four different file structures: f77 blocked structure, text structure,
unblocked structure, and COS blocked structure. By default, the f77 blocked structure is used unless a file
structure is selected at open time. If an alternative file structure is needed, the user can select a file structure
by using the -s or -F option on the assign command.

The -s and -F options are mutually exclusive. The following examples show how to use different assign
command options to select different file structures.

Structure

assign Command

F77 blocked

assign -F f77

text

assign -F text
assign -s text

unblocked

assign -F system
assign -s unblocked

COS blocked

assign -F cos
assign -s cos

The following examples show how to adjust blocking:

● To select an unblocked file structure for a sequential unformatted file:

IUN = 1
CALL ASNUNIT(IUN,'-s unblocked',IER)
OPEN(IUN,FORM='UNFORMATTED',ACCESS='SEQUENTIAL')

● The assign -s u command can also be used to specify the unblocked file structure for a sequential
unformatted file. When this option is selected, I/O is unbuffered. Each Fortran READ or WRITE statement
results in a read or write system call such as the following:

CALL ASNFILE('fort.1','-s u',IER)
OPEN(1,FORM='UNFORMATTED',ACCESS='SEQUENTIAL')

● To assign unit 10 a COS blocked structure:

assign -s cos u:10

The full set of options allowed with the assing -s command are as follows:

● bin (not recommended)

● blocked

● cos

Enhanced I/O: Using the assign Environment

 152

● sbin

● text

● unblocked

Table 23. Fortran Access Methods and Options

Access and Form assign -s ft Defaults assign -s ft Options

Sequential unformatted, BUFFER
IN and BUFFER OUT

blocked / cos / f77 bin
sbin
u
unblocked

Direct unformatted unblocked bin
sbin
u
unblocked

Sequential formatted text blocked
cos
sbin/text

Direct formatted text sbin/text

Unblocked File Structure
A file with an unblocked file structure contains undelimited records. Because it does not contain any record control
words, it does not have record boundaries. The unblocked file structure can be specified for a file opened with
either unformatted sequential access or unformatted direct access. It is the default file structure for a file opened
as an unformatted direct-access file.

Do not attempt to use a BACKSPACE statement to reposition a file with an unblocked file structure. Since record
boundaries do not exist, the file cannot be repositioned to a previous record.

BUFFER IN and BUFFER OUT statements can specify a file having an unbuffered and unblocked file structure. If
the file is specified with assign -s u, BUFFER IN and BUFFER OUT statements can perform asynchronous
unformatted I/O.

There are several ways to use the assign command to specify unblocked file structure. All ways result in a
similar file structure but with different library buffering styles, use of truncation on a file, alignment of data, and
recognition of an end-of-file record in the file. The following unblocked data file structure specifications are
available:

Specification Structure

assign -s unblocked Library-buffered

assign -F system No library buffering

Enhanced I/O: Using the assign Environment

 153

Specification Structure

assign -s sbin Buffering that is compatible with standard I/O; for
example, both library and system buffering

The type of file processing for an unblocked data file structure depends on the assign -s ft option that is
declared or assumed for a Fortran file.

For more information about buffering, see Specify Buffer BehaviorSpecify Foreign File FormatsDefault Buffer
SizesLibrary BufferingSystem CacheUnbuffered I/O.

An I/O request for a file specified using the assign -s unblocked command does not need to be a multiple of
a specific number of bytes. Such a file is truncated after the last record is written to the file. Padding occurs for
files specified with the assign -s bin command and the assign -s unblocked command. Padding usually
occurs when noncharacter variables follow character variables in an unformatted direct-access file.

No padding is done in an unformatted sequential access file. An unformatted direct-access file created by a
Fortran program on CLE systems contains records that are the same length. The end-of-file record is recognized
in sequential-access files.

assign -s sbin File Processing
Use an assign -s sbin specification for a Fortran file opened with either unformatted direct access or
unformatted sequential access. The file does not contain record delimiters. The file created for assign -s sbin
in this instance has an unblocked data file structure and uses unblocked file processing.

The assign -s sbin option can be specified for a Fortran file that is declared as formatted sequential access.
Because the file contains records that are delimited with the new-line character, it is not an unblocked data file
structure. It is the same as a text file structure.

The assign -s sbin option is compatible with the standard C I/O functions.

Cray discourages the use of assign - s sbin because it typically yields poor I/O performance. If an FFIO
layer cannot be used, using assign -s text for formatted files and assign -s unblocked for unformatted
files usually produces better I/O performance than using assign -s sbin.

assign -s bin File Processing
An I/O request for a file that is specified with assign -s bin does not need to be a multiple of a specific
number of bytes. Padding occurs when noncharacter variables follow character variables in an unformatted
record.

The I/O library uses an internal buffer for the records. If opened for sequential access, a file is not truncated after
each record is written to the file.

assign -s u File Processing
The assign -s u command specifies undefined or unknown file processing. An assign -s u specification
can be specified for a Fortran file declared as unformatted sequential or direct access. Because the file does not
contain record delimiters, it has an unblocked data file structure. Both synchronous and asynchronous BUFFER
IN and BUFFER OUT processing can be used with u file processing.

Enhanced I/O: Using the assign Environment

 154

Fortran sequential files declared by using assign -s u are not truncated after the last word written. The user
must execute an explicit ENDFILE statement on the file.

text File Structure
The text file structure consists of a stream of 8-bit ASCII characters. Every record in a text file is terminated by a
newline character (\n, ASCII 012). Some utilities may omit the newline character on the last record, but the
Fortran library treats such an occurrence as a malformed record. This file structure may be specified for a file that
is declared as either formatted sequential access or formatted direct access. It is the default file structure for
formatted sequential access and formatted direct access files.

The assign -s text command specifies the library-buffered text file structure. Both library and system buffering are
done for all text file structures.

An I/O request for a file using assign -s text does not need to be a multiple of a specific number of bytes.

BUFFER IN and BUFFER OUT statements cannot be used with this structure. Use a BACKSPACE statement to
reposition a file with this structure.

cos or blocked File Structure
The cos or blocked file structure uses control words to mark the beginning of each sector and to delimit each
record. Specify this file structure for a file that is declared as unformatted sequential access. Synchronous
BUFFER IN and BUFFER OUT statements can create and access files with this file structure.

Specify this file structure with one of the following assign commands:

assign -s cos
assign -s blocked
assign -F cos
assign -F blocked

These four assign commands result in the same file structure.

An I/O request on a blocked file is library buffered.

In a cos file structure, one or more ENDFILE records are allowed. BACKSPACE statements can be used to
reposition a file with this structure.

A blocked file is a stream of words that contains control words called Block Control Word (BCW) and Record
Control Words (RCW) to delimit records. Each record is terminated by an EOR (end-of-record) RCW. At the
beginning of the stream, and every 512 words thereafter (including any RCWs), a BCW is inserted. An end-of-file
(EOF) control word marks a special record that is always empty. Fortran considers this empty record to be an
endfile record. The end-of-data (EOD) control word is always the last control word in any blocked file. The EOD is
always immediately preceded by either an EOR, or by an EOF and a BCW.

Each control word contains a count of the number of data words to be found between it and the next control word.
In the case of the EOD, this count is 0. Because there is a BCW every 512 words, these counts never point
forward more than 511 words.

A record always begins at a word boundary. If a record ends in the middle of a word, the rest of that word is zero
filled; the ubc field of the closing RCW contains the number of unused bits in the last word.

The following illustration and table is a representation of the structure of a BCW.

Enhanced I/O: Using the assign Environment

 155

m unused bdf unused bn fwi

(4) (7) (1) (19) (24) (9)

Field Bits Description

m 0-3 Type of control word; 0 for BCW

bdf 11 Bad Data flag (1-bit, 1=bad data)

bn 31-54 Block number (modulo 224)

fwi 55-63 Forward index; the number of words
to the next control word

The following illustration and table is a representation of the structure of an RCW.

m ubc tran bdf srs unused pfi pri fwi

(4) (6) (1) (1) (1) (7) (20) (15) (9)

Field Bits Description

m 0-3 Type of control word; 108 for EOR,
168 for EOF, and 178 for EOD

ubc 4-9 Unused bit count; number of
unused low-order bits in last word of
previous record

tran 10 Transparent record field (unused)

bdf 11 Bad data flag (unused)

srs 12 Skip remainder of sector (unused)

pfi 20-39 Previous file index; offset modulo
220 to the block where the current
file starts (as defined by the last
EOF)

pri 40-54 Previous record index; offset
modulo 215 to the block where the
current record starts

fwi 55-63 Forward index; the number of words
to the next control word

Specify Buffer Behavior
A buffer is a temporary storage location for data while the data is being transferred. Buffers are often used for the
following purposes:

Enhanced I/O: Using the assign Environment

 156

● Small I/O requests can be collected into a buffer, and the overhead of making many relatively expensive
system calls can be greatly reduced.

● Many data file structures such as cos contain control words. During the write process, a buffer can be used as
a work area where control words can be inserted into the data stream (a process called blocking). The
blocked data is then written to the device. During the read process, the same buffer work area can be used to
remove the control words before passing the data on to the user (called deblocking).

● When data access is random, the same data may be requested many times. A cache is a buffer that keeps
old requests in the buffer in case these requests are needed again. A cache that is sufficiently large or
efficient can avoid a large part of the physical I/O by having the data ready in a buffer. When the data is often
found in the cache buffer, it is referred to as having a high hit rate. For example, if the entire file fits in the
cache and the file is present in the cache, no more physical requests are required to perform the I/O. In this
case, the hit rate is 100%.

● Running the I/O devices and the processors in parallel often improves performance; therefore, it is useful to
keep processors busy while data is being moved. To do this when writing, data can be transferred to the
buffer at memory-to-memory copy speed. Use an asynchronous I/O request. The control is then immediately
returned to the program, which continues to execute as if the I/O were complete (a process called write-
behind). A similar process called read-ahead can be used while reading; in this process, data is read into a
buffer before the actual request is issued for it. When it is needed, it is already in the buffer and can be
transferred to the user at very high speed.

● When direct I/O is enabled (assign -B on), data is staged in the system buffer cache. While this can yield
improved performance, it also means that performance is affected by program competition for system buffer
cache. To minimize this effect, avoid public caches when possible.

● In many cases, the best asynchronous I/O performance can be realized by using the FFIO cachea layer
(assign -F cachea). This layer supports read-ahead, write-behind, and improved cache reuse.

The size of the buffer used for a Fortran file can have a substantial effect on I/O performance. A larger buffer
size usually decreases the system time needed to process sequential files. However, large buffers increase a
program's memory usage; therefore, optimizing the buffer size for each file accessed in a program on a case-
by-case basis can help increase I/O performance and minimize memory usage.

The -b option on the assign command specifies a buffer size, in blocks, for the unit. The -b option can be
used with the -s option, but it cannot be used with the -F option. Use the -F option to provide I/O path
specifications that include buffer sizes; the -b, and -u options do not apply when -F is specified.

For more information about the selection of buffer sizes, see the assign(1) man page.

The following examples of buffer size specification illustrate using the assign -b and assign -F options:

● If unit 1 is a large sequential file for which many Fortran READ or WRITE statements are issued, increase the
buffer size to a large value, using the following assign command:

assign -b buffer-size u:buffer-count

● If the file foo is a small file or is accessed infrequently, minimize the buffer size using the following assign
command:

assign -b 1 f:foo

Enhanced I/O: Using the assign Environment

 157

Specify Foreign File Formats
The Fortran I/O library can read and write files with record blocking and data formats native to operating systems
from other vendors. The assign -F command specifies a foreign record blocking; the assign -C command
specifies the type of character conversion; the -N option specifies the type of numeric data conversion. When -N
or -C is specified, the data is converted automatically during the processing of Fortran READ and WRITE
statements. For example, assume that a record in file fgnfile contains the following character and integer data:

character*4 ch
integer int
open(iun,FILE='fgnfile',FORM='UNFORMATTED')
read(iun) ch, int

Use the following assign command to specify foreign record blocking and foreign data formats for character and
integer data:

assign -F ibm.vbs -N ibm -C ebcdic fgnfile

One of the most common uses of the assign command is to swap big-endian for little-endian files. To access
big-endian unformatted files on a little-endian system such as the Cray XE, use the following command:

assign -N swap_endian fgnfile

This assumes the file is a normal f77 unformatted file with 32-bit record control images with a byte count. The
library routines swap both the control images and the data when reading or writing the file.

If all unformatted sequential files are the opposite endianness, use the following command:

assign -N swap_endian g:su

Default Buffer Sizes
The Fortran I/O library automatically selects default buffer sizes according to file access type as shown in the
table, Default Buffer Sizes for Fortran I/O Library Routines. Override the defaults by using the assign command.
The following subsections describe the default buffer sizes on various systems.

One block is 4,096 bytes on CLE systems.

Table 24. Default Buffer Sizes for Fortran I/O Library Routines

Access Type Default Buffer Size

Sequential formatted 16 blocks (65,536 bytes)

Sequential unformatted 128 blocks (524,288 bytes)

Direct formatted The smaller of:

● The record length in bytes + 1

● 16 blocks (65,536 bytes)

Direct unformatted The larger of:

● The record length

Enhanced I/O: Using the assign Environment

 158

Access Type Default Buffer Size

● 16 blocks (65,536 bytes)

Four buffers of default size are allocated. For more information, see the description of the cachea layer in the
intro_ffio(3F) man page.

Library Buffering
The term library buffering refers to a buffer that the I/O library associates with a file. When a file is opened, the I/O
library checks the access, form, and any attributes declared on the assign command to determine the type of
processing that should be used on the file. Buffers are an integral part of the processing.

If the file is assigned with one of the following assign options, library buffering is used:

● -s blocked

● -F spec (buffering as defined by spec)

● -s cos

● -s bin

● -s unblocked

The -F option specifies flexible file I/O (FFIO), which uses library buffering if the specifications selected include a
need for buffering. In some cases, more than one set of buffers might be used in processing a file. For example,
the -F bufa,cos option specifies two library buffers for a read of a blank compressed COS blocked file. One
buffer handles the blocking and deblocking associated with the COS blocked control words, and the second buffer
is used as a work area to process blank compression. In other cases (for example, -F system), no library
buffering occurs.

System Cache
The operating system uses a set of buffers in kernel memory for I/O operations. These are collectively called the
system cache. The I/O library uses system calls to move data between the user memory space and the system
buffer. The system cache ensures that the actual I/O to the logical device is well formed, and it tries to remember
recent data in order to reduce physical I/O requests.

The following assign command options can be expected to use system cache:

● -s sbin

● -F spec (FFIO, depends on spec)

For the assign -F cachea command, a library buffer ensures that the actual system calls are well formed and
the system buffer cache is bypassed. This is not true for the assign -s u option. If assign -s u is planned to
be used to bypass the system cache, all requests must be well formed.

Enhanced I/O: Using the assign Environment

 159

Unbuffered I/O
The simplest form of buffering is none at all; this unbuffered I/O is known as direct I/O. For sufficiently large, well-
formed requests, buffering is not necessary and can add unnecessary overhead and delay. The following assign
command specifies unbuffered I/O:

assign -s u ...

Use the assign command to bypass both library buffering and the system cache for all well-formed requests.
The data is transferred directly between the user data area and the logical device. Requests that are not well
formed will result in I/O errors.

Specify Foreign File Formats
The Fortran I/O library can read and write files with record blocking and data formats native to operating systems
from other vendors. The assign -F command specifies a foreign record blocking; the assign -C command
specifies the type of character conversion; the -N option specifies the type of numeric data conversion. When -N
or -C is specified, the data is converted automatically during the processing of Fortran READ and WRITE
statements. For example, assume that a record in file fgnfile contains the following character and integer data:

character*4 ch
integer int
open(iun,FILE='fgnfile',FORM='UNFORMATTED')
read(iun) ch, int

Use the following assign command to specify foreign record blocking and foreign data formats for character and
integer data:

assign -F ibm.vbs -N ibm -C ebcdic fgnfile

One of the most common uses of the assign command is to swap big-endian for little-endian files. To access
big-endian unformatted files on a little-endian system such as the Cray XE, use the following command:

assign -N swap_endian fgnfile

This assumes the file is a normal f77 unformatted file with 32-bit record control images with a byte count. The
library routines swap both the control images and the data when reading or writing the file.

If all unformatted sequential files are the opposite endianness, use the following command:

assign -N swap_endian g:su

Specify Memory Resident Files
The assign -F mr command specifies that a file will be memory resident. Because the mr flexible file I/O layer
does not define a record-based file structure, it must be nested beneath a file structure layer when record blocking
is needed.

For example, if unit 2 is a sequential unformatted file that is to be memory resident, the following Fortran
statements connect the unit:

CALL ASNUNIT (2,'-F cos,mr',IER)
OPEN(2,FORM='UNFORMATTED')

Enhanced I/O: Using the assign Environment

 160

The -F cos,mr specification selects COS blocked structure with memory residency.

Use and Suppress File Truncation
The assign -T option activates or suppresses truncation after the writing of a sequential Fortran file. The -T on
option specifies truncation; this behavior is consistent with the Fortran standard and is the default setting for most
assign -s fs specifications.

The assign(1) man page lists the default setting of the -T option for each -s fs specification. It also indicates
if suppression or truncation is allowed for each of these specifications.

FFIO layers that are specified by using the -F option vary in their support for suppression of truncation with -T
off.

The following figure, Access Methods and Default Buffer Sizes, summarizes the available access methods and
the default buffer sizes.

Figure 2. Access Methods and Default Buffer Sizes

14.3 Define the Assign Environment File
The assign command information is stored in the assign environment file. The location of the active assign
environment file must be provided by setting the FILENV environment variable to the desired path and file name.

Enhanced I/O: Using the assign Environment

 161

14.4 Use Local Assign Mode
The assign environment information is usually stored in the .assign environment file. Programs that do not
require the use of the global .assign environment file can activate local assign mode. If local assign mode is
selected, the assign environment will be stored in memory. Thus, other processes can not adversely affect the
assign environment used by the program.

The ASNCTL routine selects local assign mode when it is called by using one of the following command lines:

CALL ASNCTL('LOCAL',1,IER)
CALL ASNCTL('NEWLOCAL',1,IER)

Local assign mode

In the following example, a Fortran program activates local assign mode and then specifies an
unblocked data file structure for a unit before opening it. The -I option is passed to ASNUNIT to
ensure that any assign attributes continue to have an effect at the time of file connection.

C Switch to local assign environment
 CALL ASNCTL('LOCAL',1,IER)
 IUN = 11
C Assign the unblocked file structure
 CALL ASNUNIT(IUN,'-I -s unblocked',IER)
C Open unit 11
 OPEN(IUN,FORM='UNFORMATTED')

If a program contains all necessary assign statements as calls to ASSIGN, ASNUNIT, and
ASNFILE, or if a program requires total shielding from any assign commands, use the second
form of a call to ASNCTL, as follows:

C New (empty) local assign environment
 CALL ASNCTL('NEWLOCAL',1,IER)
 IUN = 11
C Assign a large buffer size
 CALL ASNUNIT(IUN,'-b 336',IER)
C Open unit 11
 OPEN(IUN,FORM='UNFORMATTED')

Enhanced I/O: Using the assign Environment

 162

15 Interlanguage Communication
The C and C++ compilers provide mechanisms for declaring external functions written in other languages. This
enables the writing of portions of an application in C, C++, Fortran, or assembly language, which can be useful in
cases where the other languages provide performance advantages or utilities not available in C or C++.

Fortran, C, C++ Interoperability
The Cray Compiler supports interoperability mechanisms specfied in the Fortran 2008 standard, ISO/IEC
1539-1:2010, and TS 29113 Further Interoperability of Fortran and C.

The Fortran 2008 standard describes interoperabilty features for:

Intrinsic Types The Fortran intrinsic module ISO_C_BINDING provides interoperability between Fortran
intrinsic types and C types. The ISO_C_BINDING module provides named constants which
can be used as KIND type parameters, compatible with C types.

In addition to the named constants required by the Fortran standard, Cray compiler provides,
as an extension, definitions for 128-bit floating, and complex types. C_FLOAT128 and
C_FLOAT128_COMPLEX correspond to C types __float128 and __float128 complex.

Derived Types
and Structures

Use the BIND attribute when creating an interoperable type:

USE ISO_C_BINDING
TYPE, BIND(C) :: THIS_TYPE
 . . .
END TYPE THIS_TYPE

Global
Variables

Use the BIND attribute with a common block declaration, or module variable:

USE ISO_C_BINDING
 INTEGER(C_INT), BIND(C) :: EXTERN
 INTEGER(C_LONG) :: CVAR
 BIND(C, NAME='var') :: CVAR
 COMMON /A/ I, J
 REAL(C_FLOAT) :: I, J
 BIND(C) :: /A/

Pointers ISO_C_BINDING provides a derived type, c_ptr, that interoperates with any C pointer type.
Also, Fortran named constant c_null_ptr is equivalent to the C value NULL.

Subroutines
and Function

Declare a Fortran procedure with the BIND attribute. Procedure arguments must be of
interoperable type. By default the Fortran compiler converts the procedure name to lower-

Interlanguage Communication

 163

http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CB4QFjAAahUKEwjW_NDs5qbHAhWLf5IKHWvYAu0&url=ftp%3A%2F%2Fftp.nag.co.uk%2Fsc22wg5%2Fn1901-n1950%2Fn1942.pdf&ei=V_HMVZb1GYv_yQTrsIvoDg&usg=AFQjCNFgiNuHwe1nMxQEGkYVsgRJg8c-8Q&bvm=bv.99804247,d.aWw

case (myfunction); this is the binding label, or corresponding name which is known to the C
compiler.

FUNCTION MYFUNCTION(X, Y), BIND(C)

Specify a different binding label:

FUNCTION MYFUNCTION(X, Y), BIND(C, NAME='C_Myfunction')

A function result must be scalar and of interoperable type. A subroutine prototype must have
a void result.

TS 29113 describes further interoperability features including:

C descriptors ISO_Fortran_binding.h defines C structure CFI_cdesc_t which facilitates
using Fortran data objects from within a C function.

ISO_Fortran binding.h Contains additional C structure definitions and macro definitions to interoperate
with an allocatable, or data pointer argument.

BIND(C) Syntax
The proc-language-binding-spec specification allows Fortran programs to interoperate with C objects. The
optional commas in FUNCTION name(), BIND(C) are Cray extensions to the Fortran standard.

ISO_C_BINDING
The ISO_C_BINDING module provides interoperability between Fortran intrinsic types and C types. The
ISO_C_BINDING module provides named constants which can be used as KIND type parameters, compatible
with C types.

In addition to the named constants required by the Fortran 2008 standard, Cray compiler provides, as an
extension, definitions for 128-bit floating, and complex types. C_FLOAT128 and C_FLOAT128_COMPLEX
correspond to C types __float128 and __float128 complex.

Interlanguage Communication Examples

Interlanguage Communication using Common Block/Global

// common_c.c : example of function called from common.f90

#include <stdio.h>
#include <stdlib.h>
#include <ISO_Fortran_binding.h>

// globals that match up to the common blocks in common.f90
float c_single;

struct common {
 double var1;
 int var2;
} multiple;

int c_int_array[100];

Interlanguage Communication

 164

// c function called from Fortran
void global_var_common()
{
 int i;
 // just prints and sets the globals

 printf(" In global_var_common\n");
 printf(" c_single: %f\n", c_single);
 printf(" multiple: %f, %d\n", multiple.var1, multiple.var2);
 printf(" c_int_array: %d, %d\n", c_int_array[0],
c_int_array[99]);

 c_single = 2 * c_single;
 multiple.var1 = 77.77;
 multiple.var2 = 17;
 for(i=0; i<100; i++) {
 c_int_array[i] = c_int_array[i] * 3;
 }

} // end of global_var_common

! common.f90
! Needs common_c.c

program common_block
 use, intrinsic :: iso_c_binding
! use check_error
 implicit none
!
! declare the common blocks for c globals
! one with a single real variable
 real(c_float) r_var
 common /c_single/ r_var
! one with an integer array
 integer i_array(100)
 common / array / i_array
! one with two variables
 real(c_double) :: var1
 integer(c_int) :: var2
 common / multiple / var1, var2
! do the bind c on the common blocks, renaming one
BIND(C,name="c_int_array") :: / array /
BIND(C) :: / multiple /, /c_single/

call sub1()

end program common_block

!!!
subroutine sub1()
 use, intrinsic :: iso_c_binding

! declare the common blocks for c globals
! one with a single real variable
 real(c_float) r_var
 common /c_single/ r_var
! one with an integer array

Interlanguage Communication

 165

 integer i_array(100)
 common / array / i_array
 real(c_double) var1
 integer(c_int) var2
 common / multiple / var1, var2
! do the bind c on the common blocks, renaming array
BIND(C,name="c_int_array") :: / array /
BIND(C) :: / multiple /, /c_single/

 interface
 subroutine global_var_common() bind(c)
 use,intrinsic :: iso_c_binding
 implicit none
 end subroutine global_var_common
 end interface

r_var = -99.3
var1 = 88.88
var2 = -13
i_array = [(i,i=1,100)]

! call the c function
call global_var_common()

print *, "In sub1"
print *, " r_var : ", r_var
print *, " var1 : ", var1
print *, " var2 : ", var2
print *, " array : ", i_array(1), i_array(100)

end subroutine

Interlanguage Communication using Derived Structure

// c program that calls the Fortran subroutine with struct argument,
f2008 C.11.3
//

#include <stdio.h>
#include <stdlib.h>
#include <ISO_Fortran_binding.h>

 // declare the structure type
struct pass {
int lenc, lenf;
float *c, *f;
};

 // prototype for the Fortran function
void simulation(long alpha, double *beta, long *gamma, double
delta[], struct pass *arrays);

// program that calls the Fortran subroutine
int main ()
{
 int i;
 long alpha, gamma;

Interlanguage Communication

 166

 double beta, delta[100];
 struct pass arrays;

 alpha = 1234L;
 gamma = 5678L;
 beta = 12.34;
 for(i=0; i<100; i++) {
 delta[i] = i+1;
 }

 // fill in some of the structure
 arrays.lenc = 100;
 arrays.lenf = 0;
 arrays.c = (float *) malloc(100*sizeof(float));
 arrays.f = NULL;
 for(i=0; i<100; i++) {
 arrays.c[i] = 2*(i+1);
 }

 // reference the Fortran subroutine
 simulation(alpha, &beta, &gamma, delta, &arrays);

 printf(" After simulation\n");
 printf(" alpha: %d, beta: %f\n", alpha, beta);
 printf(" gamma: %d\n", gamma);
 printf(" arrays.lenc: %d\n", arrays.lenc);
 printf(" arrays.c[0],[arrays.lenc-1],: %f, %f\n", arrays.c[0],
arrays.c[arrays.lenc-1]);
 printf(" arrays.lenf: %d\n", arrays.lenf);
 printf(" arrays.f[0],[arrays.lenf-1],: %f, %f\n", arrays.f[0],
arrays.f[arrays.lenf-1]);

} // end of main

! Example derived type/structure interoperability, f2008 C.11.3
!**
subroutine simulation(alpha, beta, gamma, delta, arrays) bind(c)
 use, intrinsic :: iso_c_binding
 implicit none
 integer (c_long), value :: alpha
 real (c_double), intent(inout) :: beta
 integer (c_long), intent(out) :: gamma
 real (c_double),dimension(*),intent(in) :: delta
 type, bind(c) :: pass
 integer (c_int) :: lenc, lenf
 type (c_ptr) :: c, f
 end type pass
 type (pass), intent(inout) :: arrays
 real (c_float), allocatable, target, save :: eta(:)
 real (c_float), pointer :: c_array(:)
 integer i

 print *, "In simulation"
 print *, " alpha: ", alpha, ", beta: ", beta
 print *, " delta(1),(100): ", delta(1), delta(100)

 ! associate c_array with an array allocated in c
 call c_f_pointer (arrays%c, c_array, [arrays%lenc])
 print *, " c_array(1),(arrays%lenc): ", c_array(1), c_array(arrays
%lenc)

Interlanguage Communication

 167

 ! allocate an array and make it available in c
 arrays%lenf = 100
 allocate (eta(arrays%lenf))
 arrays%f = c_loc(eta)
 eta = [(i*3,i=1,arrays%lenf)]

 ! change argument values
 c_array = c_array * 2.0
 gamma = 77
 beta = -55.66

end subroutine simulation

Interlanguage Communication using Module

// c function called from module.f90

#include <stdio.h>
#include <stdlib.h>
#include <ISO_Fortran_binding.h>

// globals that match up to the module variables in module.f90
float r_var;
double var1;
int var2;
int c_int_array[100];

// c function called from Fortran
void global_var_module()
{
 int i;
 // just prints and sets the globals

 printf(" In global_var_module\n");
 printf(" r_var : %f\n", r_var);
 printf(" var1 : %f\n", var1);
 printf(" var2 : %d\n", var2);
 printf(" c_int_array: %d, %d\n", c_int_array[0],
c_int_array[99]);

 r_var = 2 * r_var;
 var1 = 77.77;
 var2 = 17;
 for(i=0; i<100; i++) {
 c_int_array[i] = c_int_array[i] * 3;
 }

} // end of global_var_module

! Example of module/global variable interoperability.
! Needs c function from module_c.c
!
**
module module_example_mod
 use, intrinsic :: iso_c_binding

Interlanguage Communication

 168

 real(c_float) r_var
 integer i_array(100)
 real(c_double) :: var1
 integer(c_int) :: var2
BIND(C,name="c_int_array") :: i_array
BIND(C) :: r_var, var1, var2
end module module_example_mod

!!!
program module_example
 use module_example_mod
 implicit none

call sub1()

end program module_example

!!!
subroutine sub1()
 use module_example_mod

 interface ! for the c function
 subroutine global_var_module() bind(c)
 use,intrinsic :: iso_c_binding
 implicit none
 end subroutine global_var_module
 end interface

r_var = -99.3
var1 = 88.88
var2 = -13
i_array = [(i,i=1,100)]

! call the c function
call global_var_module()

print *, "In sub1"
print *, " r_var : ", r_var
print *, " var1 : ", var1
print *, " var2 : ", var2
print *, " array : ", i_array(1), i_array(100)

end subroutine

Interlanguage Communication

 169

	Contents
	1 About the Cray Fortran Reference Manual
	2 Fortran Compiler Introduction
	3 Invoke the Cray Fortran Compiler
	4 Compiler Command Line Options
	4.1 Cache Management Options
	4.2 Debug Options
	4.3 List and Compiler Info Options
	4.4 General Optimization Options
	4.5 Interprocedural Analysis (IPA) Optimization Options
	4.6 Linker Options
	4.7 Math Options
	4.8 Message Options
	4.9 Miscellaneous Options
	4.10 Miscellaneous Fortran Specific Options
	4.11 Performance Tool Options
	4.12 Preprocess Options
	4.13 Program Model Specific Options
	4.14 Scalar Optimization Options
	4.15 Target Options
	4.16 Vector Optimization Options

	5 Set Environment Variables to the Cray Fortran Compiler
	6 Cray Fortran Directive Use
	6.1 Inline and Clone Directives
	6.2 Local Control Directives
	6.3 Miscellaneous Directives
	6.4 PGAS Directive
	6.5 Scalar Optimization Directives
	6.6 Storage Directives
	6.7 Vectorization Directives

	7 Source Preprocessing
	8 OpenMP Overview
	9 OpenACC Use
	10 Conformance Checks
	11 Cray Fortran Language Extensions
	11.1 Characters, Lexical Tokens, and Source Form
	11.2 Types
	11.3 Data Object Declarations and Specifications
	11.4 Expressions and Assignment
	11.5 Execution Control
	11.6 Input/Output Statements
	11.7 Error, End-of-record, and End-of-file Conditions
	11.8 Input/Output Editing
	11.9 Program Units
	11.10 Procedures
	11.11 Intrinsic Procedures and Modules
	11.12 Exceptions and IEEE Arithmetic
	11.13 Coarrays
	11.14 Compile and Execute Programs Containing Coarrays
	11.15 Submodules

	12 Cray Fortran Deferred Implementation and Optional Features
	13 Cray Fortran Implementation Specifics
	14 Enhanced I/O: Using the assign Environment
	14.1 Understand the assign Environment
	14.2 Tune File Connection Behavior
	14.3 Define the Assign Environment File
	14.4 Use Local Assign Mode

	15 Interlanguage Communication

